Face recognition using 2DLDA algorithm

Sittinon Kongsontana, Y. Rangsanseri
{"title":"Face recognition using 2DLDA algorithm","authors":"Sittinon Kongsontana, Y. Rangsanseri","doi":"10.1109/ISSPA.2005.1581028","DOIUrl":null,"url":null,"abstract":"This paper proposes Two–Dimensional Linear Discriminant Analysis (2DLDA) for feature extraction which used for face recognition application. This method is developed from Fisher Linear Discrimnant (FLD) and Two–Dimensional Principle Component Analysis (2DPCA). In this method, 2DLDA directly uses the image matrix to calculate the between-class scatter matrix and within-class scatter matrix. Moreover, 2DLDA will be handling the problem that the within-class scatter matrix maybe singular. The experimental results indicated that the 2DLDA method is more computationally efficient than conventional methods.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1581028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes Two–Dimensional Linear Discriminant Analysis (2DLDA) for feature extraction which used for face recognition application. This method is developed from Fisher Linear Discrimnant (FLD) and Two–Dimensional Principle Component Analysis (2DPCA). In this method, 2DLDA directly uses the image matrix to calculate the between-class scatter matrix and within-class scatter matrix. Moreover, 2DLDA will be handling the problem that the within-class scatter matrix maybe singular. The experimental results indicated that the 2DLDA method is more computationally efficient than conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别采用2DLDA算法
提出了一种基于二维线性判别分析(2DLDA)的人脸识别特征提取方法。该方法由Fisher线性判别法(FLD)和二维主成分分析法(2DPCA)发展而来。在该方法中,2DLDA直接使用图像矩阵计算类间散点矩阵和类内散点矩阵。此外,2DLDA将处理类内散射矩阵可能是奇异的问题。实验结果表明,该方法比传统方法具有更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban site path loss prediction for mobile communications employing stratospheric platforms Mask constrained beam pattern synthesis for large arrays Neural network approaches to nonlinear blind source separation On the design of equiripple multidimensional FIR digital filters Improved Huffman code tables for H.263/H.263+ based video compression applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1