Implementation of High Level Synthesis for Adaptive FIR Filtering on Embedded System

S. Sitjongsataporn, A. Thitinaruemit, S. Prongnuch
{"title":"Implementation of High Level Synthesis for Adaptive FIR Filtering on Embedded System","authors":"S. Sitjongsataporn, A. Thitinaruemit, S. Prongnuch","doi":"10.1109/ICEAST52143.2021.9426296","DOIUrl":null,"url":null,"abstract":"This paper presents the development of high level synthesis tools for finite impulse response (FIR) filtering application on the embedded system. A hardware description language (HDL) is used to describe the structure and behaviour of the electronic circuits and digital logic circuits. The HDL coder is a high level synthesis tool that converts the C/C++ files into.ngc files and then to generate bitstream. MATLAB is supported with Vivado in order to generate the MATLAB programming on FPGA board. Based on the least mean square (LMS) algorithm, FIR filter is developed by MATLAB generated with the HDL coder and compatible with FPGA hardware. Then, the developed algorithm is implemented and automated the verification of HDL code on Xilinx Zedboard for FIR filtering and planning including with the cost estimation and hardware usage. Simulation implementation show that the experimental results of adaptive LMS-FIR from MATLAB and Vivado can perform well for system identification.","PeriodicalId":416531,"journal":{"name":"2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST52143.2021.9426296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents the development of high level synthesis tools for finite impulse response (FIR) filtering application on the embedded system. A hardware description language (HDL) is used to describe the structure and behaviour of the electronic circuits and digital logic circuits. The HDL coder is a high level synthesis tool that converts the C/C++ files into.ngc files and then to generate bitstream. MATLAB is supported with Vivado in order to generate the MATLAB programming on FPGA board. Based on the least mean square (LMS) algorithm, FIR filter is developed by MATLAB generated with the HDL coder and compatible with FPGA hardware. Then, the developed algorithm is implemented and automated the verification of HDL code on Xilinx Zedboard for FIR filtering and planning including with the cost estimation and hardware usage. Simulation implementation show that the experimental results of adaptive LMS-FIR from MATLAB and Vivado can perform well for system identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入式系统自适应FIR滤波高级综合的实现
本文介绍了在嵌入式系统中应用有限脉冲响应(FIR)滤波的高级综合工具的开发。硬件描述语言(HDL)用于描述电子电路和数字逻辑电路的结构和行为。HDL编码器是将C/ c++文件转换成语言的高级综合工具。NGC文件,然后生成比特流。为了在FPGA板上生成MATLAB程序,使用Vivado支持MATLAB。基于最小均方(LMS)算法,利用MATLAB开发了FIR滤波器,并采用HDL编码器生成,与FPGA硬件兼容。然后,将所开发的算法在Xilinx Zedboard上实现并自动验证HDL代码,用于FIR滤波和规划,包括成本估算和硬件使用。仿真实现表明,基于MATLAB和Vivado的自适应LMS-FIR的实验结果能够很好地用于系统辨识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Application for Basic Computer Troubleshooting using TensorFlow Lite Exploitation of IoTs for PMU in Tethered Drone Multi-Tier Model with JSON-RPC in Telemedicine Devices Authentication and Authorization Protocol Neuro-fuzzy Model with Neighborhood Component Analysis for Air Quality Prediction Extremely Low-Power Fifth-Order Low-Pass Butterworth Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1