Resource Defragmentation Using Market-Driven Allocation in Virtual Desktop Clouds

P. Calyam, S. Seetharam, B. Homchaudhuri, Manish Kumar
{"title":"Resource Defragmentation Using Market-Driven Allocation in Virtual Desktop Clouds","authors":"P. Calyam, S. Seetharam, B. Homchaudhuri, Manish Kumar","doi":"10.1109/IC2E.2015.37","DOIUrl":null,"url":null,"abstract":"Similar to memory or disk fragmentation in personal computers, emerging \"virtual desktop cloud\" (VDC) services experience the problem of data center resource fragmentation which occurs due to on-the-fly provisioning of virtual desktop (VD) resources. Irregular resource holes due to fragmentation lead to sub-optimal VD resource allocations, and cause: (a)decreased user quality of experience (QoE), and (b) increased operational costs for VDC service providers. In this paper, we address this problem by developing a novel, optimal \"Market-Driven Provisioning and Placement\" (MDPP) scheme that is based upon distributed optimization principles. The MDPP scheme channelizes inherent distributed nature of the resource allocation problem by capturing VD resource bids via a virtual market to explore soft spots in the problem space, and consequently defragments a VDC through cost-aware utility-maximal VD re-allocations or migrations. Through extensive simulations of VD request allocations to multiple data centers for diverse VD application and user QoE profiles, we demonstrate that our MDPP scheme outperforms existing schemes that are largely based on centralized optimization principles. Moreover, MDPP scheme can achieve high VDC performance and scalability, measurable in terms of a 'Net Utility' metric, even when VD resource location constraints are imposed to meet orthogonal security objectives.","PeriodicalId":395715,"journal":{"name":"2015 IEEE International Conference on Cloud Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Similar to memory or disk fragmentation in personal computers, emerging "virtual desktop cloud" (VDC) services experience the problem of data center resource fragmentation which occurs due to on-the-fly provisioning of virtual desktop (VD) resources. Irregular resource holes due to fragmentation lead to sub-optimal VD resource allocations, and cause: (a)decreased user quality of experience (QoE), and (b) increased operational costs for VDC service providers. In this paper, we address this problem by developing a novel, optimal "Market-Driven Provisioning and Placement" (MDPP) scheme that is based upon distributed optimization principles. The MDPP scheme channelizes inherent distributed nature of the resource allocation problem by capturing VD resource bids via a virtual market to explore soft spots in the problem space, and consequently defragments a VDC through cost-aware utility-maximal VD re-allocations or migrations. Through extensive simulations of VD request allocations to multiple data centers for diverse VD application and user QoE profiles, we demonstrate that our MDPP scheme outperforms existing schemes that are largely based on centralized optimization principles. Moreover, MDPP scheme can achieve high VDC performance and scalability, measurable in terms of a 'Net Utility' metric, even when VD resource location constraints are imposed to meet orthogonal security objectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于市场驱动分配的虚拟桌面云资源碎片整理
与个人计算机中的内存或磁盘碎片类似,新兴的“虚拟桌面云”(VDC)服务也面临数据中心资源碎片的问题,这是由于虚拟桌面(VD)资源的动态供应造成的。碎片化导致的不规则资源洞会导致VDC资源分配不理想,导致用户体验质量下降,增加VDC服务提供商的运营成本。在本文中,我们通过开发一种基于分布式优化原则的新颖、最优的“市场驱动的供应和安置”(MDPP)方案来解决这个问题。MDPP方案通过虚拟市场捕获VD资源投标来探索问题空间中的软点,从而通过成本感知的效用最大化VD重新分配或迁移来清理VDC的碎片,从而疏导资源分配问题固有的分布式特性。通过对不同VD应用程序和用户QoE配置文件的VD请求分配到多个数据中心的大量模拟,我们证明了我们的MDPP方案优于主要基于集中优化原则的现有方案。此外,MDPP方案可以实现高VDC性能和可扩展性,即使在VD资源位置约束被施加以满足正交安全目标时,也可以根据“净效用”指标进行测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-memory computing for scalable data analytics Automating Cloud Service Level Agreements Using Semantic Technologies A Case Study of IaaS and SaaS in a Public Cloud Architecture for High Confidence Cloud Security Monitoring Towards a Practical and Efficient Search over Encrypted Data in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1