SVLDL: Improved Speaker Age Estimation Using Selective Variance Label Distribution Learning

Zuheng Kang, Jianzong Wang, Junqing Peng, Jing Xiao
{"title":"SVLDL: Improved Speaker Age Estimation Using Selective Variance Label Distribution Learning","authors":"Zuheng Kang, Jianzong Wang, Junqing Peng, Jing Xiao","doi":"10.1109/SLT54892.2023.10023124","DOIUrl":null,"url":null,"abstract":"Estimating age from a single speech is a classic and challenging topic. Although Label Distribution Learning (LDL) can represent adjacent indistinguishable ages well, the uncertainty of the age estimate for each utterance varies from person to person, i.e., the variance of the age distribution is different. To address this issue, we propose selective variance label distribution learning (SVLDL) method to adapt the variance of different age distributions. Furthermore, the model uses WavLM as the speech feature extractor and adds the auxiliary task of gender recognition to further improve the performance. Two tricks are applied on the loss function to enhance the robustness of the age estimation and improve the quality of the fitted age distribution. Extensive experiments show that the model achieves state-of-the-art performance on all aspects of the NIST SRE08-10 and a real-world datasets.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10023124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Estimating age from a single speech is a classic and challenging topic. Although Label Distribution Learning (LDL) can represent adjacent indistinguishable ages well, the uncertainty of the age estimate for each utterance varies from person to person, i.e., the variance of the age distribution is different. To address this issue, we propose selective variance label distribution learning (SVLDL) method to adapt the variance of different age distributions. Furthermore, the model uses WavLM as the speech feature extractor and adds the auxiliary task of gender recognition to further improve the performance. Two tricks are applied on the loss function to enhance the robustness of the age estimation and improve the quality of the fitted age distribution. Extensive experiments show that the model achieves state-of-the-art performance on all aspects of the NIST SRE08-10 and a real-world datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVLDL:使用选择性方差标签分布学习改进说话人年龄估计
从一次演讲中估计年龄是一个经典而富有挑战性的话题。尽管标签分布学习(LDL)可以很好地表示相邻的不可区分的年龄,但每个话语的年龄估计的不确定性因人而异,即年龄分布的方差是不同的。为了解决这个问题,我们提出了选择性方差标签分布学习(SVLDL)方法来适应不同年龄分布的方差。此外,该模型采用WavLM作为语音特征提取器,并增加了性别识别的辅助任务,进一步提高了性能。在损失函数上应用了两种技巧来增强年龄估计的鲁棒性,提高年龄分布的拟合质量。大量的实验表明,该模型在NIST SRE08-10和真实世界数据集的各个方面都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phone-Level Pronunciation Scoring for L1 Using Weighted-Dynamic Time Warping The Clever Hans Effect in Voice Spoofing Detection A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders Unsupervised Domain Adaptation of Neural PLDA Using Segment Pairs for Speaker Verification Learning Accent Representation with Multi-Level VAE Towards Controllable Speech Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1