On evolving neighborhood parameters for fuzzy density clustering

A. Banerjee
{"title":"On evolving neighborhood parameters for fuzzy density clustering","authors":"A. Banerjee","doi":"10.1109/CEC.2013.6557970","DOIUrl":null,"url":null,"abstract":"The problem of identifying core patterns with the correct neighborhood parameters is a major challenge for density-based clustering techniques derived from the popular DBSCAN algorithm. An evolutionary approach to optimizing the assignment of core patterns is proposed in this paper. Key ideas presented here include a genetic representation that associates distinct neighborhood parameters with potential core patterns and specialized crossover and mutation operators. The evolutionary framework is based on the multi-objective NSGA-II algorithm, with simplified fitness measures derived from local (neighborhood) information. Clustering experiments on both synthetic and benchmark clustering datasets are presented and results are compared to the original DBSCAN, fuzzy DBSCAN and k-means.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of identifying core patterns with the correct neighborhood parameters is a major challenge for density-based clustering techniques derived from the popular DBSCAN algorithm. An evolutionary approach to optimizing the assignment of core patterns is proposed in this paper. Key ideas presented here include a genetic representation that associates distinct neighborhood parameters with potential core patterns and specialized crossover and mutation operators. The evolutionary framework is based on the multi-objective NSGA-II algorithm, with simplified fitness measures derived from local (neighborhood) information. Clustering experiments on both synthetic and benchmark clustering datasets are presented and results are compared to the original DBSCAN, fuzzy DBSCAN and k-means.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊密度聚类中邻域参数的演化
识别具有正确邻域参数的核心模式的问题是来自流行的DBSCAN算法的基于密度的聚类技术面临的主要挑战。提出了一种优化核心模式分配的进化方法。本文提出的关键思想包括将不同邻域参数与潜在核心模式以及专门的交叉和突变操作符相关联的遗传表示。该进化框架基于多目标NSGA-II算法,简化了基于局部(邻域)信息的适应度度量。给出了在合成和基准聚类数据集上的聚类实验,并将实验结果与原始DBSCAN、模糊DBSCAN和k-means进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on two-step search based on PSO to improve convergence and diversity for Many-Objective Optimization Problems An evolutionary approach to the multi-objective pickup and delivery problem with time windows A new performance metric for user-preference based multi-objective evolutionary algorithms A new algorithm for reducing metaheuristic design effort Evaluation of gossip Vs. broadcast as communication strategies for multiple swarms solving MaOPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1