Pose Synchronization under Multiple Pair-wise Relative Poses

Yifan Sun, Qi-Xing Huang
{"title":"Pose Synchronization under Multiple Pair-wise Relative Poses","authors":"Yifan Sun, Qi-Xing Huang","doi":"10.1109/CVPR52729.2023.01256","DOIUrl":null,"url":null,"abstract":"Pose synchronization, which seeks to estimate consistent absolute poses among a collection of objects from noisy relative poses estimated between pairs of objects in isolation, is a fundamental problem in many inverse applications. This paper studies an extreme setting where multiple relative pose estimates exist between each object pair, and the majority is incorrect. Popular methods that solve pose synchronization via recovering a low-rank matrix that encodes relative poses in block fail under this extreme setting. We introduce a three-step algorithm for pose synchronization under multiple relative pose inputs. The first step performs diffusion and clustering to compute the candidate poses of the input objects. We present a theoretical result to justify our diffusion formulation. The second step jointly optimizes the best pose for each object. The final step refines the output of the second step. Experimental results on benchmark datasets of structure-from-motion and scan-based geometry reconstruction show that our approach offers more accurate absolute poses than state-of-the-art pose synchronization techniques.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pose synchronization, which seeks to estimate consistent absolute poses among a collection of objects from noisy relative poses estimated between pairs of objects in isolation, is a fundamental problem in many inverse applications. This paper studies an extreme setting where multiple relative pose estimates exist between each object pair, and the majority is incorrect. Popular methods that solve pose synchronization via recovering a low-rank matrix that encodes relative poses in block fail under this extreme setting. We introduce a three-step algorithm for pose synchronization under multiple relative pose inputs. The first step performs diffusion and clustering to compute the candidate poses of the input objects. We present a theoretical result to justify our diffusion formulation. The second step jointly optimizes the best pose for each object. The final step refines the output of the second step. Experimental results on benchmark datasets of structure-from-motion and scan-based geometry reconstruction show that our approach offers more accurate absolute poses than state-of-the-art pose synchronization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多个成对相对姿势下的姿势同步
姿态同步是许多逆应用中的一个基本问题,它寻求从孤立的对对象之间估计的噪声相对姿态中估计出一组对象之间一致的绝对姿态。本文研究了一种极端情况,即每个目标对之间存在多个相对姿态估计,并且大多数估计是不正确的。在这种极端情况下,通过恢复编码块中相对姿态的低秩矩阵来解决姿态同步的流行方法失败了。在多个相对姿态输入条件下,提出了一种姿态同步的三步算法。第一步执行扩散和聚类来计算输入对象的候选姿态。我们提出了一个理论结果来证明我们的扩散公式。第二步共同优化每个物体的最佳姿势。最后一步细化第二步的输出。在基于运动的结构和基于扫描的几何重建的基准数据集上的实验结果表明,我们的方法比目前最先进的姿势同步技术提供了更精确的绝对姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1