High efficiency segmented bulk devices cascaded with high-performance superlattice cold-stage

E. Siivola, P. Thomas, K. Coonley, A. Reddy, J. Posthill, B. Cook, R. Venkatasubramanian
{"title":"High efficiency segmented bulk devices cascaded with high-performance superlattice cold-stage","authors":"E. Siivola, P. Thomas, K. Coonley, A. Reddy, J. Posthill, B. Cook, R. Venkatasubramanian","doi":"10.1109/ICT.2005.1519888","DOIUrl":null,"url":null,"abstract":"Segmented bulk single-couple devices have been fabricated using SiGe, PbTe, and TAGS materials. Initial optimization studies have yielded power generation efficiencies in excess of 12%, with cold-side temperatures of /spl sim/175/spl deg/C and hot-side temperatures of /spl sim/700/spl deg/C. The goal is to cascade these devices with high-performance Bi/sub 2/Te/sub 3/-superlattice cold-stage operating between 25/spl deg/C to 175/spl deg/C. We will be discussing the trade space between segmented and cascaded assemblies as it relates to the thermal and electrical matching between the different layers and device complexity. It will be shown how layer matching affects overall device performance and how this knowledge can be used to determine the optimal design. We will also discuss the methodologies used to meet the various challenges of high temperature materials assembly including ohmic contacts, diffusion barriers, and CTE induced stresses. Measurement results of device performance will be provided to illustrate the consequences of the methodologies used. We will also include results from early integration of these 2-stage segmented devices to thin-film superlattice cold-stage device to yield three stage power devices.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Segmented bulk single-couple devices have been fabricated using SiGe, PbTe, and TAGS materials. Initial optimization studies have yielded power generation efficiencies in excess of 12%, with cold-side temperatures of /spl sim/175/spl deg/C and hot-side temperatures of /spl sim/700/spl deg/C. The goal is to cascade these devices with high-performance Bi/sub 2/Te/sub 3/-superlattice cold-stage operating between 25/spl deg/C to 175/spl deg/C. We will be discussing the trade space between segmented and cascaded assemblies as it relates to the thermal and electrical matching between the different layers and device complexity. It will be shown how layer matching affects overall device performance and how this knowledge can be used to determine the optimal design. We will also discuss the methodologies used to meet the various challenges of high temperature materials assembly including ohmic contacts, diffusion barriers, and CTE induced stresses. Measurement results of device performance will be provided to illustrate the consequences of the methodologies used. We will also include results from early integration of these 2-stage segmented devices to thin-film superlattice cold-stage device to yield three stage power devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能超晶格冷级联的高效分段体器件
采用SiGe、PbTe和TAGS材料制备了分段体单偶联器件。最初的优化研究表明,发电效率超过12%,冷侧温度为/spl sim/175/spl℃,热侧温度为/spl sim/700/spl℃。目标是将这些器件级联到高性能Bi/sub 2/Te/sub 3/-超晶格冷级,工作温度在25/spl℃至175/spl℃之间。我们将讨论分段和级联组件之间的交易空间,因为它涉及到不同层之间的热和电匹配以及设备复杂性。它将显示层匹配如何影响整体器件性能,以及如何使用这些知识来确定最佳设计。我们还将讨论用于满足高温材料组装的各种挑战的方法,包括欧姆接触,扩散屏障和CTE诱导应力。将提供器件性能的测量结果,以说明所使用方法的后果。我们还将包括将这些两级分段器件早期集成到薄膜超晶格冷级器件以产生三级功率器件的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microstructure and high-temperature thermoelectric properties of Cu-doped NaCo/sub 2/O/sub 4/ Comparison of skutterudites and advanced thin-film B/sub 4/C/B/sub 9/C and Si/SiGe materials in advanced thermoelectric energy recovery systems Research on the novel high-intensity thermoelectric generator and its application on HEV Evaluation of monolithic and segmented thermoelectric materials using a potentiometer-type high accuracy generator test facility Comparison of structural parameters for Zn/sub 4-x/Cd/sub x/Sb/sub 3/ compounds analyzed by the Rietveld method using two crystallographic models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1