Stochastic Dominance Without Tears

H. Vinod
{"title":"Stochastic Dominance Without Tears","authors":"H. Vinod","doi":"10.2139/ssrn.3773309","DOIUrl":null,"url":null,"abstract":"When does an entire income distribution f(x2) dominate f(x1)? When can we comprehensively say that f(x2) is ``richer'' than f(x1)? Anderson (1996) proposed a nonparametric quantification for pair-wise welfare-ordering of two countries by their entire income distributions. His algorithm readily computes index values for stochastic dominance of orders 1 to 4, denoted as SD1 to SD4. This paper fills a gap in the literature by providing a simple ranking of n densities by suggesting two new SD-type algorithms, both avoiding pair-wise comparisons. The first new algorithm is exact because it replaces Anderson's trapezoidal approximations subject to truncation errors by exact areas under step-functions defined by empirical cumulative distribution functions, ECDF(xj). Our second new SD-type algorithm uses four orders of differencing of time series data. We use monthly return data on Apple, Microsoft, and Google stocks over the latest 14 years to illustrate. We provide intuitive derivations and include 95% bootstrap confidence intervals for inference on estimated SD-type indexes","PeriodicalId":224430,"journal":{"name":"Decision-Making in Economics eJournal","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision-Making in Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3773309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When does an entire income distribution f(x2) dominate f(x1)? When can we comprehensively say that f(x2) is ``richer'' than f(x1)? Anderson (1996) proposed a nonparametric quantification for pair-wise welfare-ordering of two countries by their entire income distributions. His algorithm readily computes index values for stochastic dominance of orders 1 to 4, denoted as SD1 to SD4. This paper fills a gap in the literature by providing a simple ranking of n densities by suggesting two new SD-type algorithms, both avoiding pair-wise comparisons. The first new algorithm is exact because it replaces Anderson's trapezoidal approximations subject to truncation errors by exact areas under step-functions defined by empirical cumulative distribution functions, ECDF(xj). Our second new SD-type algorithm uses four orders of differencing of time series data. We use monthly return data on Apple, Microsoft, and Google stocks over the latest 14 years to illustrate. We provide intuitive derivations and include 95% bootstrap confidence intervals for inference on estimated SD-type indexes
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无泪随机优势
什么时候整个收入分配f(x2)支配f(x1)?什么时候我们可以全面地说f(x2)比f(x1)“更丰富”?Anderson(1996)提出了一种非参数量化两国整体收入分配的成对福利排序。他的算法很容易计算出1到4阶随机优势的指标值,记为SD1到SD4。本文通过提出两种新的sd型算法,提供了n个密度的简单排序,填补了文献中的空白,这两种算法都避免了成对比较。第一个新算法是精确的,因为它用经验累积分布函数ECDF(xj)定义的阶跃函数下的精确面积取代了受截断误差影响的安德森梯形近似。我们的第二种新的sd型算法使用时间序列数据的四阶差分。我们用最近14年苹果、微软和谷歌股票的月度回报数据来说明这一点。我们提供了直观的推导,并包含95%的自举置信区间来推断估计的sd型指标
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mean-Variance Market Timing the U.S. Stock Market Depression and Shopping Behavior Memory and Trading Contracting on What Firm Owners Value Stuck in the Wisdom of Crowds: Information, Knowledge, and Heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1