{"title":"Millimeter Wave Based Sag Measurement Using Parabolic Approximation for Smart Grid Overhead Transmission Line Monitoring","authors":"Ayman Uddin Mahin, S. Islam, Md. Farhad Hossain","doi":"10.1109/SmartGridComm.2019.8909707","DOIUrl":null,"url":null,"abstract":"Power transmission monitoring and control are essential components of a smart grid. Power transmission capacity of an overhead transmission line is greatly dependent on the sag of the line. When the sag is lower, more power can be transmitted safely through the line. Due to this, real-time sag measurement and monitoring is important for effective transmission of power through the line. In this paper, a mmWave based sag measurement technique incorporating parabolic approximation is proposed which improves the accuracy of sag calculation. Impact of different system parameters on the calculated value of the sag is also investigated. The results show that the proposed method can achieve better accuracy even with smaller number of samples, though the accuracy degrades with error in angle of arrival.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Power transmission monitoring and control are essential components of a smart grid. Power transmission capacity of an overhead transmission line is greatly dependent on the sag of the line. When the sag is lower, more power can be transmitted safely through the line. Due to this, real-time sag measurement and monitoring is important for effective transmission of power through the line. In this paper, a mmWave based sag measurement technique incorporating parabolic approximation is proposed which improves the accuracy of sag calculation. Impact of different system parameters on the calculated value of the sag is also investigated. The results show that the proposed method can achieve better accuracy even with smaller number of samples, though the accuracy degrades with error in angle of arrival.