{"title":"Competitive Coevolution with K-Random Opponents for Pareto Multiobjective Optimization","authors":"Tse Guan Tan, J. Teo, H. Lau","doi":"10.1109/ICNC.2007.309","DOIUrl":null,"url":null,"abstract":"In this paper, our objective is to conduct comprehensive tests for competitive coevolution using an evolutionary multiobjective algorithm for 3 dimensional problems. This competitive coevolution will be implemented with k-random opponents strategy. A new algorithm which integrates competitive coevolution (CE) and the strength Pareto evolutionary algorithm 2 (SPEA2) is proposed to achieve this objective. The resulting algorithm is referred to as the strength Pareto evolutionary algorithm 2 with competitive coevolution (SPEA2-CE). The performance between SPEA2-CE is compared against SPEA2 to solve problems with each having three objectives using DTLZ suite of test problems. In general, the results show that the SPEA2-CE with k- random opponents performed well for the generational distance and coverage but performed less favorably for spacing.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, our objective is to conduct comprehensive tests for competitive coevolution using an evolutionary multiobjective algorithm for 3 dimensional problems. This competitive coevolution will be implemented with k-random opponents strategy. A new algorithm which integrates competitive coevolution (CE) and the strength Pareto evolutionary algorithm 2 (SPEA2) is proposed to achieve this objective. The resulting algorithm is referred to as the strength Pareto evolutionary algorithm 2 with competitive coevolution (SPEA2-CE). The performance between SPEA2-CE is compared against SPEA2 to solve problems with each having three objectives using DTLZ suite of test problems. In general, the results show that the SPEA2-CE with k- random opponents performed well for the generational distance and coverage but performed less favorably for spacing.