A Stochastic Approach for Virtual Machine Placement in Volunteer Cloud Federations

A. Rezgui, S. Rezgui
{"title":"A Stochastic Approach for Virtual Machine Placement in Volunteer Cloud Federations","authors":"A. Rezgui, S. Rezgui","doi":"10.1109/IC2E.2014.85","DOIUrl":null,"url":null,"abstract":"Volunteer cloud federations (VCFs) are cloud federations where clouds may join and leave a federation without restrictions and may contribute resources to the federation without long term commitment. This makes it difficult to predict the long term availability of resources. Also, in IaaS VCFs, volunteers may collectively contribute a large number of heterogeneous virtual machine instances. In this paper, we focus on the problem of efficiently allocating this dynamic, heterogeneous capacity to a flow of incoming VM instantiation requests. We propose an approach, called stochastic least differential capacity (SLDC),that allows over-provisioning only when necessary. The approach uses historical information about recent instantiation requests to derive stochastic predictions regarding future demand. We implemented VCFSim, a VCF simulator that uses the proposed resource allocation solution. The results of the experimental evaluation show that the proposed approach is able to improve the success rate of VM instantiation requests by up to 38%compared to an approach that uses exact matching with no demand forecasting.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Volunteer cloud federations (VCFs) are cloud federations where clouds may join and leave a federation without restrictions and may contribute resources to the federation without long term commitment. This makes it difficult to predict the long term availability of resources. Also, in IaaS VCFs, volunteers may collectively contribute a large number of heterogeneous virtual machine instances. In this paper, we focus on the problem of efficiently allocating this dynamic, heterogeneous capacity to a flow of incoming VM instantiation requests. We propose an approach, called stochastic least differential capacity (SLDC),that allows over-provisioning only when necessary. The approach uses historical information about recent instantiation requests to derive stochastic predictions regarding future demand. We implemented VCFSim, a VCF simulator that uses the proposed resource allocation solution. The results of the experimental evaluation show that the proposed approach is able to improve the success rate of VM instantiation requests by up to 38%compared to an approach that uses exact matching with no demand forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
志愿云联盟中虚拟机放置的随机方法
志愿云联盟(vcf)是云联盟,其中的云可以不受限制地加入和离开联盟,也可以向联盟贡献资源,而无需长期承诺。这使得很难预测资源的长期可用性。此外,在IaaS vcf中,志愿者可能共同贡献大量异构虚拟机实例。在本文中,我们关注的问题是如何有效地将这种动态、异构的容量分配给传入的VM实例化请求流。我们提出了一种称为随机最小差分容量(SLDC)的方法,仅在必要时允许过度供应。该方法使用关于最近实例化请求的历史信息来得出关于未来需求的随机预测。我们实现了VCFSim,这是一个使用建议的资源分配解决方案的VCF模拟器。实验结果表明,与不使用需求预测的精确匹配方法相比,该方法可将虚拟机实例化请求的成功率提高38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Declarative and Imperative Cloud Application Provisioning Based on TOSCA Splicing MPLS and OpenFlow Tunnels Based on SDN Paradigm CoMoT -- A Platform-as-a-Service for Elasticity in the Cloud A Verification Platform for SDN-Enabled Applications Extraction of Bridges from High Resolution Remote Sensing Image Based on Topology Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1