A Genetic Algorithm for Test Suite Optimization

Chetan J. Shingadiya, Tjprc
{"title":"A Genetic Algorithm for Test Suite Optimization","authors":"Chetan J. Shingadiya, Tjprc","doi":"10.24247/ijcseitrjun20204","DOIUrl":null,"url":null,"abstract":"Software testing is one of the most important parts of the software development process. In software development, developers always rely on software testing to deal with bugs. The problem of software testing in software development is one of the most important and research areas. Here, test set optimization plays an important role in system performance. The genetic algorithm is one of the techniques, widely used for optimization based on problems inspired by nature. In this article, we demonstrate the genetic algorithm with tournament selection techniques. We, evaluate system performance based on a number of test inputs","PeriodicalId":185673,"journal":{"name":"International Journal of Computer Science Engineering and Information Technology Research","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science Engineering and Information Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24247/ijcseitrjun20204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software testing is one of the most important parts of the software development process. In software development, developers always rely on software testing to deal with bugs. The problem of software testing in software development is one of the most important and research areas. Here, test set optimization plays an important role in system performance. The genetic algorithm is one of the techniques, widely used for optimization based on problems inspired by nature. In this article, we demonstrate the genetic algorithm with tournament selection techniques. We, evaluate system performance based on a number of test inputs
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试套件优化的遗传算法
软件测试是软件开发过程中最重要的部分之一。在软件开发中,开发人员总是依靠软件测试来处理bug。软件测试问题是软件开发中最重要的研究领域之一。在这里,测试集优化对系统性能起着重要的作用。遗传算法是一种广泛应用于基于自然问题的优化的技术。在本文中,我们将演示带有锦标赛选择技术的遗传算法。我们基于一些测试输入来评估系统性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Hydroponics System using NFT System and IOT Detection and Classification of Brain Tumor Using Naïve Bayes and J48 Employee Salary Prediction using Multi Model Machine Learning Techniques, A Comparative Analysis Adhering Agile Methodology in Covid-19 Digital Voting System Using Blockchain Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1