{"title":"Saturated Pool Boiling Mechanisms During Single Bubble Heat Transfer: Comparison at Two Wall Superheats","authors":"Jungho Kim, Fatih Demiray, N. Yaddanapudi","doi":"10.1115/imece2000-1504","DOIUrl":null,"url":null,"abstract":"\n A study of single bubbles growing on a microscale heater array kept at nominally constant temperature was performed. The behavior of bubbles nucleating at a single site at two different temperatures (22.5 K and 27.5 K superheat) is compared for saturated pool boiling of FC-72 at 1 atm. It is concluded that energy is transferred from the surface through similar heat transfer mechanisms at both superheats. Microlayer evaporation was observed to play a minor role in the overall heat transfer, with microconvection/transient conduction being the dominant mechanism. Evaluation of various heat transfer models are made.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A study of single bubbles growing on a microscale heater array kept at nominally constant temperature was performed. The behavior of bubbles nucleating at a single site at two different temperatures (22.5 K and 27.5 K superheat) is compared for saturated pool boiling of FC-72 at 1 atm. It is concluded that energy is transferred from the surface through similar heat transfer mechanisms at both superheats. Microlayer evaporation was observed to play a minor role in the overall heat transfer, with microconvection/transient conduction being the dominant mechanism. Evaluation of various heat transfer models are made.