Multichannel Nonnegative Matrix Factorization With Motor Data-Regularized Activations For Robust Ego-Noise Suppression

Alexander Schmidt, Walter Kellermann
{"title":"Multichannel Nonnegative Matrix Factorization With Motor Data-Regularized Activations For Robust Ego-Noise Suppression","authors":"Alexander Schmidt, Walter Kellermann","doi":"10.1109/ICAS49788.2021.9551193","DOIUrl":null,"url":null,"abstract":"The suppression of ego-noise is often addressed using dictionary-based methods where the characteristic spectral structure of ego-noise is approximated by a linear combination of dictionary entries. A blind, entirely audio data-based selection of the dictionary entries is, however, challenging and reacts sensitive against other signals besides ego-noise in a mixture. For a more robust behavior, we propose a motor data-dependent regularization term which promotes similar activations for similar physical states of the robot. The proposed regularization term is added to a multichannel nonnegative matrix factorization (MNMF)-based signal model and according update rules are derived. We analyze the proposed method for a challenging ego-noise scenario and demonstrate the efficacy of the method compared to an approach for which no motor data is used.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The suppression of ego-noise is often addressed using dictionary-based methods where the characteristic spectral structure of ego-noise is approximated by a linear combination of dictionary entries. A blind, entirely audio data-based selection of the dictionary entries is, however, challenging and reacts sensitive against other signals besides ego-noise in a mixture. For a more robust behavior, we propose a motor data-dependent regularization term which promotes similar activations for similar physical states of the robot. The proposed regularization term is added to a multichannel nonnegative matrix factorization (MNMF)-based signal model and according update rules are derived. We analyze the proposed method for a challenging ego-noise scenario and demonstrate the efficacy of the method compared to an approach for which no motor data is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电机数据正则化激活的多通道非负矩阵分解鲁棒自我噪声抑制
自我噪声的抑制通常使用基于字典的方法来解决,其中自我噪声的特征谱结构由字典条目的线性组合近似。然而,盲目的、完全基于音频数据的词典条目选择是具有挑战性的,并且对混合中的自我噪声之外的其他信号反应敏感。为了获得更强的鲁棒性,我们提出了一个与电机数据相关的正则化项,该项促进了机器人在相似物理状态下的相似激活。将提出的正则化项加入到基于多通道非负矩阵分解(MNMF)的信号模型中,并推导出相应的更新规则。我们针对具有挑战性的自我噪声场景分析了所提出的方法,并与不使用运动数据的方法相比,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1