A content-based system for music recommendation and visualization of user preferences working on semantic notions

D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera
{"title":"A content-based system for music recommendation and visualization of user preferences working on semantic notions","authors":"D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera","doi":"10.1109/CBMI.2011.5972554","DOIUrl":null,"url":null,"abstract":"The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个基于内容的系统,用于音乐推荐和用户偏好的可视化,处理语义概念
在过去的几年里,数字音乐的数量以前所未有的速度增长,需要开发有效的搜索和检索方法。特别是,基于内容的音乐推荐偏好激发是一个具有挑战性的问题,本文有效地解决了这一问题。我们提出了一个系统,自动生成推荐和可视化用户的音乐偏好,给她/他的帐户在流行的在线音乐服务。使用这些服务,系统检索用户喜欢的一组曲目,并进一步计算基于原始音频信息的音乐偏好的语义描述。对于音频分析,我们使用了Canoris API的功能。然后,系统使用语义音乐相似度度量和用户偏好可视化,将语义描述符映射到视觉元素,生成音乐推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient method for the unsupervised discovery of signalling motifs in large audio streams Efficient video summarization and retrieval tools Tonal-based retrieval of Arabic and middle-east music by automatic makam description Automatic illustration with cross-media retrieval in large-scale collections Interactive social, spatial and temporal querying for multimedia retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1