MPPT for Photovoltaic System using non-linear Hybrid Robust Integral Backstepping Controller

Kamran Ali, Q. Khan, L. Khan, Fazal Hayat, U. Khan, Ameen Ullah
{"title":"MPPT for Photovoltaic System using non-linear Hybrid Robust Integral Backstepping Controller","authors":"Kamran Ali, Q. Khan, L. Khan, Fazal Hayat, U. Khan, Ameen Ullah","doi":"10.1109/iCoMET48670.2020.9073940","DOIUrl":null,"url":null,"abstract":"The PV (Photovoltaic) cells have a non-linear current-voltage (I-V) and power-voltage (P-V) characteristics with a unique maximum power point (MPP), which entirely depends on the environmental conditions. So, to continuously extract maximum power from a PV system under varying environmental conditions, the maximum power point tracking (MPPT) control approach is needed to operate the PV system at MPP. Therefore, in this article, a non-linear hybrid robust integral backstepping MPPT control approach is proposed for stand-alone PV system. The system consists of PV array, noninverted DC-DC buck-boost converter and a resistive load. The resistive load is interfaced to PV array through the buck-boost converter. The designed MPPT control approach continuously adjust the duty cycle of the converter, in such a way that the PV array output voltage tracks the reference voltage, thus ensuring the maximum power extraction. The performance of the designed MPPT approach is tested and validated in MATLAB/Simulink under fast varying environmental conditions, varying load, faults and parametric uncertainties occurs in the PV system. The proposed control approach presents a zero overshoot, fast convergence, good transient response, less rising time, a minimum tracking error and a very fast reaction against environmental conditions. To show the superiority and robustness of the proposed MPPT control approach a comparative analysis is presented with the backstepping and PID control approaches.","PeriodicalId":431051,"journal":{"name":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET48670.2020.9073940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The PV (Photovoltaic) cells have a non-linear current-voltage (I-V) and power-voltage (P-V) characteristics with a unique maximum power point (MPP), which entirely depends on the environmental conditions. So, to continuously extract maximum power from a PV system under varying environmental conditions, the maximum power point tracking (MPPT) control approach is needed to operate the PV system at MPP. Therefore, in this article, a non-linear hybrid robust integral backstepping MPPT control approach is proposed for stand-alone PV system. The system consists of PV array, noninverted DC-DC buck-boost converter and a resistive load. The resistive load is interfaced to PV array through the buck-boost converter. The designed MPPT control approach continuously adjust the duty cycle of the converter, in such a way that the PV array output voltage tracks the reference voltage, thus ensuring the maximum power extraction. The performance of the designed MPPT approach is tested and validated in MATLAB/Simulink under fast varying environmental conditions, varying load, faults and parametric uncertainties occurs in the PV system. The proposed control approach presents a zero overshoot, fast convergence, good transient response, less rising time, a minimum tracking error and a very fast reaction against environmental conditions. To show the superiority and robustness of the proposed MPPT control approach a comparative analysis is presented with the backstepping and PID control approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性混合鲁棒积分反步控制器的光伏系统MPPT
PV(光伏)电池具有非线性的电流电压(I-V)和功率电压(P-V)特性,具有独特的最大功率点(MPP),完全取决于环境条件。因此,为了在不同的环境条件下持续提取光伏系统的最大功率,需要采用最大功率点跟踪(MPPT)控制方法来实现光伏系统在最大功率点的运行。因此,本文提出了一种针对独立光伏系统的非线性混合鲁棒积分反演MPPT控制方法。该系统由光伏阵列、非倒流式DC-DC降压升压变换器和一个阻性负载组成。电阻负载通过升压变换器连接到光伏阵列。所设计的MPPT控制方法连续调整变流器的占空比,使光伏阵列输出电压跟踪参考电压,从而保证最大功率提取。在MATLAB/Simulink中对所设计的MPPT方法进行了快速变化的环境条件、变负荷、故障和参数不确定性下的性能测试和验证。该控制方法具有零超调、收敛快、瞬态响应好、上升时间短、跟踪误差小、对环境条件的响应快等特点。为了证明所提出的MPPT控制方法的优越性和鲁棒性,并与反步控制和PID控制方法进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Faulty Sensors by Analyzing the Uncertain Data Using Probabilistic Database Construction of the Exact Solution of Ripa Model with Primitive Variable Approach A Review on Hybrid Energy Storage Systems in Microgrids Meta-model for Stress Testing on Blockchain Nodes Ethics of Artificial Intelligence: Research Challenges and Potential Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1