Lightning Fault Classification on Transmission Lines using Discrete Wavelet Transform and Artificial Neural Network

Azwadi Mohamad, N. Abdullah, N. Hatta, H. Mokhlis, H. Illias, Mohd Syukri Ali
{"title":"Lightning Fault Classification on Transmission Lines using Discrete Wavelet Transform and Artificial Neural Network","authors":"Azwadi Mohamad, N. Abdullah, N. Hatta, H. Mokhlis, H. Illias, Mohd Syukri Ali","doi":"10.1109/APL57308.2023.10181774","DOIUrl":null,"url":null,"abstract":"Accurate classification of lightning faults on transmission lines is crucial in identifying the type of fault, whether it is due to shielding failure or back-flashover. This knowledge is essential in implementing a cost-effective and optimized mitigation method to improve transmission line performance. Previous mitigation efforts focused on improving tower footing resistance (TFR), which does not mitigate shielding failure. This study proposes an artificial intelligence approach to recognize, classify, and distinguish between back-flashover and shielding failure based on waveform signatures of disturbance fault recorders (DFR) with a sampling rate of 5kHz. The methods used in this study are discrete wavelet transform (DWT) utilizing wavelet similarity index, and artificial neural network (ANN). The simulation data using these methods demonstrate an 88.9% accuracy rate for the DWT method, while the ANN method achieves an accuracy rate of 97% for back flashover and 100% for shielding failure using signals at 16.7MHz, while for down-sampled data at 5KHz, the accuracy are 93% and 97% respectively.","PeriodicalId":371726,"journal":{"name":"2023 12th Asia-Pacific International Conference on Lightning (APL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Asia-Pacific International Conference on Lightning (APL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APL57308.2023.10181774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of lightning faults on transmission lines is crucial in identifying the type of fault, whether it is due to shielding failure or back-flashover. This knowledge is essential in implementing a cost-effective and optimized mitigation method to improve transmission line performance. Previous mitigation efforts focused on improving tower footing resistance (TFR), which does not mitigate shielding failure. This study proposes an artificial intelligence approach to recognize, classify, and distinguish between back-flashover and shielding failure based on waveform signatures of disturbance fault recorders (DFR) with a sampling rate of 5kHz. The methods used in this study are discrete wavelet transform (DWT) utilizing wavelet similarity index, and artificial neural network (ANN). The simulation data using these methods demonstrate an 88.9% accuracy rate for the DWT method, while the ANN method achieves an accuracy rate of 97% for back flashover and 100% for shielding failure using signals at 16.7MHz, while for down-sampled data at 5KHz, the accuracy are 93% and 97% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散小波变换和人工神经网络的输电线路雷电故障分类
输电线路雷电故障的准确分类对于确定故障类型至关重要,无论是屏蔽故障还是反闪络故障。这些知识对于实施具有成本效益和优化的缓解方法以提高输电线路性能至关重要。以前的缓解措施主要集中在提高塔基电阻(TFR)上,这并不能减轻屏蔽失效。本文提出了一种基于干扰故障记录仪(DFR)波形特征的反闪络和屏蔽故障识别、分类和区分的人工智能方法,采样率为5kHz。本文采用了基于小波相似度的离散小波变换(DWT)和人工神经网络(ANN)两种方法。使用这些方法的仿真数据表明,DWT方法的准确率为88.9%,而ANN方法在16.7MHz信号下对反闪络和屏蔽失效的准确率分别为97%和100%,而在5KHz下采样数据下,准确率分别为93%和97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of cost-effective lightning protection measures for underprivileged communities Preliminary Results of Corona Discharge Current Measurements in the Early Formation of Lightning on Tower Performance of Bentonite and Peat Moss Mixtures as Grounding Enhancement Materials Thunderstorm Prediction Model Using SMOTE Sampling and Machine Learning Approach A Year of Global Lightning Deaths and Injuries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1