{"title":"An Adaptive Formation Control Architecture for A Team of Quadrotors with Performance and Safety Constraints","authors":"Zhongjun Hu, Xu Jin","doi":"10.23919/ACC53348.2022.9867857","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel adaptive formation control architecture for a group of quadrotor systems, under line-of-sight (LOS) distance and relative distance constraints, where the constraint requirements can be both asymmetric and time-varying in nature. Universal barrier functions are adopted in the controller design and analysis, which is a generic framework that can address system with different types of constraints in a unified controller architecture. Furthermore, each quadrotor’s mass is unknown, and the system dynamics are subjected to time-varying external disturbance. Through rigorous analysis, an exponential convergence rate can be guaranteed on the distance tracking errors, while the constraints are satisfied during the operation. A simulation example further demonstrates the efficacy of the proposed control framework.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a novel adaptive formation control architecture for a group of quadrotor systems, under line-of-sight (LOS) distance and relative distance constraints, where the constraint requirements can be both asymmetric and time-varying in nature. Universal barrier functions are adopted in the controller design and analysis, which is a generic framework that can address system with different types of constraints in a unified controller architecture. Furthermore, each quadrotor’s mass is unknown, and the system dynamics are subjected to time-varying external disturbance. Through rigorous analysis, an exponential convergence rate can be guaranteed on the distance tracking errors, while the constraints are satisfied during the operation. A simulation example further demonstrates the efficacy of the proposed control framework.