Fault-tolerance and learning performance of the back-propagation algorithm using massively parallel implementation

P. Murali, H. Wechsler, M. Manohar
{"title":"Fault-tolerance and learning performance of the back-propagation algorithm using massively parallel implementation","authors":"P. Murali, H. Wechsler, M. Manohar","doi":"10.1109/FMPC.1990.89483","DOIUrl":null,"url":null,"abstract":"Mapping the backpropagation (BP) algorithm onto an SIMD (single-instruction-stream, multiple-data-stream) machine, such as the Massively Parallel Processor, is considered. It is shown that the size of the connectionist network underlying BP can be scaled up to large sizes, resulting in improved performance. Specifically, both fault tolerance and learning speed can be enhanced.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1990.89483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mapping the backpropagation (BP) algorithm onto an SIMD (single-instruction-stream, multiple-data-stream) machine, such as the Massively Parallel Processor, is considered. It is shown that the size of the connectionist network underlying BP can be scaled up to large sizes, resulting in improved performance. Specifically, both fault tolerance and learning speed can be enhanced.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行实现的反向传播算法的容错性和学习性能
将反向传播(BP)算法映射到SIMD(单指令流,多数据流)机器上,例如大规模并行处理器。结果表明,基于BP的连接网络的规模可以扩大到更大的规模,从而提高了性能。具体来说,可以提高容错性和学习速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological properties of banyan-hypercube networks Designing the 3-LAP (three layers associative processor) for arithmetic and symbolic applications Partitioning on the banyan-hypercube networks Multiple channel architecture Performance prediction-How good is good?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1