Deep retinanet for melanoma lesion detection

Hafeez Ur Rehman, Syed Adnan Shah, W. Ahmad, S. Anwar, Nudrat Nida
{"title":"Deep retinanet for melanoma lesion detection","authors":"Hafeez Ur Rehman, Syed Adnan Shah, W. Ahmad, S. Anwar, Nudrat Nida","doi":"10.1109/ICoDT255437.2022.9787454","DOIUrl":null,"url":null,"abstract":"Ever since the automation of melanoma detection, there is a huge challenge pertaining to irregularity in shape, size, location and color of dermoscopy images. Moreover, melanoma treatment seems a complicated task owing to inadequate details for diagnosis and limited visual inspection. Therefore, an auto-mated process of detection is required in dermoscopic images for efficient and timely detection and diagnosis of melanoma lesion. Consequently, we have localized melanoma using one stage object detector named RetinaNet. The proposed model is evaluated by conducting experiments on PH2 dataset. RetinaNet serves a single step object detector that efficiently and precisely detects melanoma region. Moreover, focal loss is also evaluated to avoid class imbalance between normal skin pixels and melanoma foreground segmentation. The proposed system showed a significant performance gain up-to 97% i.e. the average precision using PH2 sample images. Our system can be effectively utilized in automation of clinical decision support systems for practical diagnosis and prognosis of melanoma.","PeriodicalId":291030,"journal":{"name":"2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT255437.2022.9787454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ever since the automation of melanoma detection, there is a huge challenge pertaining to irregularity in shape, size, location and color of dermoscopy images. Moreover, melanoma treatment seems a complicated task owing to inadequate details for diagnosis and limited visual inspection. Therefore, an auto-mated process of detection is required in dermoscopic images for efficient and timely detection and diagnosis of melanoma lesion. Consequently, we have localized melanoma using one stage object detector named RetinaNet. The proposed model is evaluated by conducting experiments on PH2 dataset. RetinaNet serves a single step object detector that efficiently and precisely detects melanoma region. Moreover, focal loss is also evaluated to avoid class imbalance between normal skin pixels and melanoma foreground segmentation. The proposed system showed a significant performance gain up-to 97% i.e. the average precision using PH2 sample images. Our system can be effectively utilized in automation of clinical decision support systems for practical diagnosis and prognosis of melanoma.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深视网膜用于黑色素瘤病变检测
自从黑色素瘤检测自动化以来,皮肤镜图像的形状、大小、位置和颜色的不规则性就面临着巨大的挑战。此外,由于诊断细节不足和视觉检查有限,黑色素瘤的治疗似乎是一项复杂的任务。因此,在皮肤镜图像中需要一个自动化的检测过程,以便有效、及时地检测和诊断黑色素瘤病变。因此,我们使用名为RetinaNet的单阶段目标检测器来定位黑色素瘤。通过在PH2数据集上的实验对该模型进行了验证。RetinaNet提供了一种单步目标检测器,可以有效和精确地检测黑色素瘤区域。此外,还评估了焦点损失,以避免正常皮肤像素和黑色素瘤前景分割之间的类别不平衡。所提出的系统显示出显著的性能增益高达97%,即使用PH2样本图像的平均精度。该系统可有效地应用于黑色素瘤临床决策支持系统的自动化中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Images Using Deep Learning: A Survey Semantic Keywords Extraction from Paper Abstract in the Domain of Educational Big Data to support Topic Clustering Automatically Categorizing Software Technologies A Theoretical CNN Compression Framework for Resource-Restricted Environments Automatic Detection and classification of Scoliosis from Spine X-rays using Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1