Simple switch-based relay selection for amplify-and-forward cooperative diversity on rayleigh fading channels

Y. Chau, M. Al-Harbawi
{"title":"Simple switch-based relay selection for amplify-and-forward cooperative diversity on rayleigh fading channels","authors":"Y. Chau, M. Al-Harbawi","doi":"10.1109/SPAWC.2014.6941641","DOIUrl":null,"url":null,"abstract":"Amplify-and-forward cooperative diversity with simple switch-based relay (SSR) selection is addressed. With the SSR selection, dual-hop relaying is not always used for transmissions. Only when the signal-to-noise ratio (SNR) of the source-to-destination (SD) channel is lower than a preset threshold, the relays are tested one-by-one by comparing their SNR with the threshold. If the SD signal is not satisfied, with the SSR selection scheme, the first relay whose SNR is larger than the threshold is selected and its signal is combined with the SD signal by using maximal-ratio combining (MRC). The SSR selection scheme can save the total processing resource compared to the best-relay selection scheme. For performance evaluation, the bit error probability (BEP) of BPSK on independent and identically distributed (i.i.d.) flat Rayleigh fading channels is derived, and the average number of active relays (ANR) is also obtained. Numerical results are presented for performance illustrations and comparisons.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Amplify-and-forward cooperative diversity with simple switch-based relay (SSR) selection is addressed. With the SSR selection, dual-hop relaying is not always used for transmissions. Only when the signal-to-noise ratio (SNR) of the source-to-destination (SD) channel is lower than a preset threshold, the relays are tested one-by-one by comparing their SNR with the threshold. If the SD signal is not satisfied, with the SSR selection scheme, the first relay whose SNR is larger than the threshold is selected and its signal is combined with the SD signal by using maximal-ratio combining (MRC). The SSR selection scheme can save the total processing resource compared to the best-relay selection scheme. For performance evaluation, the bit error probability (BEP) of BPSK on independent and identically distributed (i.i.d.) flat Rayleigh fading channels is derived, and the average number of active relays (ANR) is also obtained. Numerical results are presented for performance illustrations and comparisons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开关的瑞利衰落信道放大转发合作分集的简单中继选择
解决了基于简单开关中继(SSR)选择的放大转发合作分集问题。使用SSR选择,双跳中继并不总是用于传输。只有当源到目的通道的信噪比(SNR)低于预设的阈值时,才逐个测试继电器,将其信噪比与阈值进行比较。如果SD信号不满意,在SSR选择方案中,选择信噪比大于阈值的第一个继电器,并使用最大比组合(MRC)将其信号与SD信号组合。与最佳中继选择方案相比,SSR选择方案可以节省总处理资源。为了进行性能评价,推导了BPSK在独立同分布平坦瑞利衰落信道上的误码率(BEP)和平均有源中继数(ANR)。给出了数值结果,以作性能说明和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unifying viewpoints on distributed asynchronous optimization for MISO interference channels Sparse channel estimation including the impact of the transceiver filters with application to OFDM Towards a principled approach to designing distributed MAC protocols Information rates employing 1-bit quantization and oversampling at the receiver Suppression of pilot-contamination in massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1