An Evaluation of Vectorizing Compilers

Saeed Maleki, Yaoqing Gao, M. Garzarán, Tommy Wong, D. Padua
{"title":"An Evaluation of Vectorizing Compilers","authors":"Saeed Maleki, Yaoqing Gao, M. Garzarán, Tommy Wong, D. Padua","doi":"10.1109/PACT.2011.68","DOIUrl":null,"url":null,"abstract":"Most of today's processors include vector units that have been designed to speedup single threaded programs. Although vector instructions can deliver high performance, writing vector code in assembly language or using intrinsics in high level languages is a time consuming and error-prone task. The alternative is to automate the process of vectorization by using vectorizing compilers. This paper evaluates how well compilers vectorize a synthetic benchmark consisting of 151 loops, two application from Petascale Application Collaboration Teams (PACT), and eight applications from Media Bench II. We evaluated three compilers: GCC (version 4.7.0), ICC (version 12.0) and XLC (version 11.01). Our results show that despite all the work done in vectorization in the last 40 years 45-71% of the loops in the synthetic benchmark and only a few loops from the real applications are vectorized by the compilers we evaluated.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"216","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 216

Abstract

Most of today's processors include vector units that have been designed to speedup single threaded programs. Although vector instructions can deliver high performance, writing vector code in assembly language or using intrinsics in high level languages is a time consuming and error-prone task. The alternative is to automate the process of vectorization by using vectorizing compilers. This paper evaluates how well compilers vectorize a synthetic benchmark consisting of 151 loops, two application from Petascale Application Collaboration Teams (PACT), and eight applications from Media Bench II. We evaluated three compilers: GCC (version 4.7.0), ICC (version 12.0) and XLC (version 11.01). Our results show that despite all the work done in vectorization in the last 40 years 45-71% of the loops in the synthetic benchmark and only a few loops from the real applications are vectorized by the compilers we evaluated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向量化编译器的评价
今天的大多数处理器都包含矢量单元,它们被设计用来加速单线程程序。虽然矢量指令可以提供高性能,但在汇编语言中编写矢量代码或在高级语言中使用内在特性是一项耗时且容易出错的任务。另一种选择是通过使用向量化编译器来自动化向量化过程。本文评估了编译器如何很好地向量化一个由151个循环、两个来自Petascale应用协作团队(PACT)的应用程序和8个来自Media Bench II的应用程序组成的合成基准。我们评估了三种编译器:GCC(版本4.7.0)、ICC(版本12.0)和XLC(版本11.01)。我们的结果表明,尽管在过去40年中在向量化方面做了很多工作,但我们评估的编译器对合成基准中的45-71%的循环和实际应用中的少数循环进行了向量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Performance Evaluation of TSO-Preserving Binary Optimization An Alternative Memory Access Scheduling in Manycore Accelerators DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Directory Compiling Dynamic Data Structures in Python to Enable the Use of Multi-core and Many-core Libraries Enhancing Data Locality for Dynamic Simulations through Asynchronous Data Transformations and Adaptive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1