Dominant modes estimation using SCUSUM method along with SSI

V. ShashankS., M. R. Mariya, M. Mamta
{"title":"Dominant modes estimation using SCUSUM method along with SSI","authors":"V. ShashankS., M. R. Mariya, M. Mamta","doi":"10.1109/MED54222.2022.9837208","DOIUrl":null,"url":null,"abstract":"Low-frequency oscillations (LFOs) in the power system have emerged as a significant possible cause of abrupt wide-area blackouts in several parts of the world. As consumer demand grows, so does the insecurity of the operational stability points of power systems as a result of unforeseen events such as connection and disconnection of loads, generators, or inter-area power networks. Although the stochastic subspace identification performed well in identifying certain LFO modes, it gives inaccurate results due to incorrect model order estimates. Incorrect estimation of model order results in the inclusion of trivial modes to essential subspace modes of a power system. The Sequential Cumulative Sum (SCUSUM) approach of order estimation detects changes in the mean with respect to the eigenvalues. This paper proposes the use of the SCUSUM method instead of estimating using the singular value decomposition of the weighted projection matrix in Stochastic Subspace Identification.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-frequency oscillations (LFOs) in the power system have emerged as a significant possible cause of abrupt wide-area blackouts in several parts of the world. As consumer demand grows, so does the insecurity of the operational stability points of power systems as a result of unforeseen events such as connection and disconnection of loads, generators, or inter-area power networks. Although the stochastic subspace identification performed well in identifying certain LFO modes, it gives inaccurate results due to incorrect model order estimates. Incorrect estimation of model order results in the inclusion of trivial modes to essential subspace modes of a power system. The Sequential Cumulative Sum (SCUSUM) approach of order estimation detects changes in the mean with respect to the eigenvalues. This paper proposes the use of the SCUSUM method instead of estimating using the singular value decomposition of the weighted projection matrix in Stochastic Subspace Identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用SCUSUM方法和SSI方法进行优势模态估计
电力系统中的低频振荡(LFOs)已成为世界上一些地区突然大范围停电的重要可能原因。随着消费者需求的增长,由于负载、发电机或区域间电网的连接和断开等不可预见的事件,电力系统运行稳定性点的不安全性也在增加。尽管随机子空间识别在识别某些LFO模式方面表现良好,但由于模型阶数估计不正确,结果不准确。模型阶数估计不正确会导致电力系统的平凡模态被包含到本质子空间模态中。顺序估计的顺序累积和(SCUSUM)方法检测相对于特征值的平均值的变化。本文提出在随机子空间辨识中,用SCUSUM方法代替加权投影矩阵的奇异值分解估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Driven LQR Design for LTI systems with Exogenous Inputs Cooperative Multi-Lane Shock Wave Detection and Dissipation via Local Communication Adaptive algorithm for vessel roll prediction based on the Bayesian approach* Three-Dimensional Impact-Angle Control with Biased Proportional Navigation On the existence and uniqueness of equilibria in meshed DC microgrids with CPLs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1