Implementing Feedback for Programming by Demonstration

K. K. Budhraja, T. Oates
{"title":"Implementing Feedback for Programming by Demonstration","authors":"K. K. Budhraja, T. Oates","doi":"10.1109/SASO.2018.00028","DOIUrl":null,"url":null,"abstract":"Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. Without the involvement of manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the demonstrator specifies spatial motion of the agents over time, and retrieves agent-level parameters required to execute that motion. A framework for reproducing emergent behavior, given an abstract demonstration, is discussed in existing work. Each query to the framework is independent of previous queries. Our work addresses this information communication deficit and incorporates a feedback mechanism to iteratively improve the quality of the reproduced behavior. This is explored by variation of regression parameters and data points used. Using data point selection to improve demonstration replication is established as a means of iterative optimization. Using optimization also shows potential for improved demonstration replication capability for the framework.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. Without the involvement of manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the demonstrator specifies spatial motion of the agents over time, and retrieves agent-level parameters required to execute that motion. A framework for reproducing emergent behavior, given an abstract demonstration, is discussed in existing work. Each query to the framework is independent of previous queries. Our work addresses this information communication deficit and incorporates a feedback mechanism to iteratively improve the quality of the reproduced behavior. This is explored by variation of regression parameters and data points used. Using data point selection to improve demonstration replication is established as a means of iterative optimization. Using optimization also shows potential for improved demonstration replication capability for the framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过演示实现编程反馈
基于代理的建模是一种建模由相互作用的代理组成的动态系统的范例,这些代理分别受指定的行为规则控制。从演示的角度来看,通过规范突发(与代理相反)行为来训练此类代理的模型以产生突发行为更容易。无需通过代码进行手动行为规范,也无需依赖已定义的可能行为分类,演示者可以指定代理随时间的空间运动,并检索执行该运动所需的代理级参数。在现有的工作中,讨论了一个抽象的再现突现行为的框架。对框架的每个查询都独立于前面的查询。我们的工作解决了这一信息沟通缺陷,并结合了一个反馈机制来迭代地提高再现行为的质量。这是通过使用回归参数和数据点的变化来探索的。建立了利用数据点选择提高演示重复性的迭代优化方法。使用优化还显示了改进框架演示复制功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Organized Resource Allocation for Reconfigurable Robot Ensembles [Copyright notice] A QoS-Aware Adaptive Mobility Handling Approach for LoRa-Based IoT Systems SASO 2018 Subreviewers Self-Adaptation of Coordination in Imperfectly Known Task Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1