Federated User Clustering for non-IID Federated Learning

Lucas Pacheco, D. Rosário, Eduadro Cerqueira, T. Braun
{"title":"Federated User Clustering for non-IID Federated Learning","authors":"Lucas Pacheco, D. Rosário, Eduadro Cerqueira, T. Braun","doi":"10.14279/TUJ.ECEASST.80.1130.1081","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is one of the leading learning paradigms for enabling a more significant presence of intelligent applications in networking considering highly distributed environments while preserving user privacy. However, FL has the significant shortcoming of requiring user data to be Independent Identically Distributed (IID) to make reliable predictions for a given group of users. We present a Neural Network-based Federated Clustering mechanism capable of clustering the local models trained by users of the network with no access to their raw data. We also present an alternative to the FedAvg aggregation algorithm used in traditional FL, which significantly increases the aggregated models' reliability in Mean Square Error by creating several training models over IID users.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/TUJ.ECEASST.80.1130.1081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Federated Learning (FL) is one of the leading learning paradigms for enabling a more significant presence of intelligent applications in networking considering highly distributed environments while preserving user privacy. However, FL has the significant shortcoming of requiring user data to be Independent Identically Distributed (IID) to make reliable predictions for a given group of users. We present a Neural Network-based Federated Clustering mechanism capable of clustering the local models trained by users of the network with no access to their raw data. We also present an alternative to the FedAvg aggregation algorithm used in traditional FL, which significantly increases the aggregated models' reliability in Mean Square Error by creating several training models over IID users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非iid联邦学习的联邦用户聚类
联邦学习(FL)是一种领先的学习范例,用于在考虑高度分布式环境的网络中实现更重要的智能应用程序,同时保护用户隐私。然而,FL有一个明显的缺点,即要求用户数据是独立同分布的(IID),以便对给定的用户组进行可靠的预测。我们提出了一种基于神经网络的联邦聚类机制,能够聚类由网络用户训练的本地模型,而无需访问其原始数据。我们还提出了一种替代传统FL中使用的FedAvg聚合算法,该算法通过在IID用户上创建多个训练模型,显着提高了聚合模型在均方误差中的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Management for Multi-Agent Systems Towards SCION-enabled IXPs: The SCION Peering Coordinator Demonstration: A cloud-control system equipped with intrusion detection and mitigation Demo: Traffic Splitting for Tor - A Defense against Fingerprinting Attacks Preface and Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1