R. Rasel, Daniel Ospina Acero, F. Teixeira, Q. Marashdeh
{"title":"Evaluating Cross-Plane Acquisitions for Volume Process Tomography in the Laplacian Regime","authors":"R. Rasel, Daniel Ospina Acero, F. Teixeira, Q. Marashdeh","doi":"10.23919/USNC-URSI-NRSM.2019.8713155","DOIUrl":null,"url":null,"abstract":"Process tomography is a well established imaging modality to monitor a variety of flow processes in industrial applications. Traditionally, this has been done through imaging of a cross section of the domain. In recent years, much interest has been devoted to volume process tomography, where a three-dimensional reconstruction is directly obtained. However, depending on the sensor design, the number of independent measurements can be much higher in volume tomography compared to its two-dimensional counterpart. This makes the reconstruction problem more challenging and may prevent real-time monitoring in certain cases. In this work we investigate the optimal choice of cross-layer measurements to provide accurate volumetric tomography while minimizing image reconstruction costs using electrical capacitance volume tomography as example.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8713155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Process tomography is a well established imaging modality to monitor a variety of flow processes in industrial applications. Traditionally, this has been done through imaging of a cross section of the domain. In recent years, much interest has been devoted to volume process tomography, where a three-dimensional reconstruction is directly obtained. However, depending on the sensor design, the number of independent measurements can be much higher in volume tomography compared to its two-dimensional counterpart. This makes the reconstruction problem more challenging and may prevent real-time monitoring in certain cases. In this work we investigate the optimal choice of cross-layer measurements to provide accurate volumetric tomography while minimizing image reconstruction costs using electrical capacitance volume tomography as example.