Improving acoustic model for English ASR System using deep neural network

Quoc Bao Nguyen, T. Vu, C. Luong
{"title":"Improving acoustic model for English ASR System using deep neural network","authors":"Quoc Bao Nguyen, T. Vu, C. Luong","doi":"10.1109/RIVF.2015.7049869","DOIUrl":null,"url":null,"abstract":"In this paper, a method based on deep learning is applied to improve acoustic model for English Automatic Speech Recognition (ASR) system using two main approaches of deep neural network (Hybrid and bottleneck feature). Deep neural networks systems are able to achieve significant improvements over a number of last year system. The experiments are carried out on the dataset containing speeches on Technology, Entertainment, and Design (TED) Talks. The results show that applying Deep neural network decrease the relative error rate by 33% compared to the MFCC baseline system.","PeriodicalId":166971,"journal":{"name":"The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2015.7049869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, a method based on deep learning is applied to improve acoustic model for English Automatic Speech Recognition (ASR) system using two main approaches of deep neural network (Hybrid and bottleneck feature). Deep neural networks systems are able to achieve significant improvements over a number of last year system. The experiments are carried out on the dataset containing speeches on Technology, Entertainment, and Design (TED) Talks. The results show that applying Deep neural network decrease the relative error rate by 33% compared to the MFCC baseline system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用深度神经网络改进英语ASR系统声学模型
本文将基于深度学习的方法应用于英语自动语音识别(ASR)系统的声学模型改进,并结合了深度神经网络的两种主要方法(混合和瓶颈特征)。深度神经网络系统能够比去年的许多系统取得显著的改进。实验是在包含科技、娱乐和设计(TED)演讲的数据集上进行的。结果表明,与MFCC基线系统相比,应用深度神经网络可将相对错误率降低33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and high capacity watermarking for image based on DWT-SVD SentiVoice - a system for querying hotel service reviews via phone On the design of energy efficient environment monitoring station and data collection network based on ubiquitous wireless sensor networks Identifying semantic and syntactic relations from text documents Quantitative evaluation of facial paralysis using tracking method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1