{"title":"BBN: throughput scaling in dense enterprise WLANs with Bind Beamforming and Nulling","authors":"Wenjie Zhou, T. Bansal, P. Sinha, K. Srinivasan","doi":"10.1145/2639108.2639113","DOIUrl":null,"url":null,"abstract":"Today's Enterprise Wireless LANs are comprised of densely deployed access points. This paper proposes BBN, an interference nulling scheme that leverages the high density of access points to enable multiple mobile devices to transmit simultaneously to multiple access points (APs), all within a single collision domain. BBN also leverages the capability of the APs to communicate with each other on the wired backbone to migrate most of the decoding complexity to the APs, while keeping the design at the mobile clients simple. Finally, we leverage the static nature of the access points to make BBN more practical in networks where the mobility of clients inhibit the use of traditional interference alignment schemes. We implement a prototype of BBN on USRP testbed showing its feasibility. The experiment results show that BBN provides a throughput gain of 1.48X over omniscient TDMA. Results from our trace-driven simulations show that BBN obtains a throughput of up to 5.6X over omniscient TDMA.","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2639113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Today's Enterprise Wireless LANs are comprised of densely deployed access points. This paper proposes BBN, an interference nulling scheme that leverages the high density of access points to enable multiple mobile devices to transmit simultaneously to multiple access points (APs), all within a single collision domain. BBN also leverages the capability of the APs to communicate with each other on the wired backbone to migrate most of the decoding complexity to the APs, while keeping the design at the mobile clients simple. Finally, we leverage the static nature of the access points to make BBN more practical in networks where the mobility of clients inhibit the use of traditional interference alignment schemes. We implement a prototype of BBN on USRP testbed showing its feasibility. The experiment results show that BBN provides a throughput gain of 1.48X over omniscient TDMA. Results from our trace-driven simulations show that BBN obtains a throughput of up to 5.6X over omniscient TDMA.