Combining image classification and image compression using vector quantization

K. Oehler, R. Gray
{"title":"Combining image classification and image compression using vector quantization","authors":"K. Oehler, R. Gray","doi":"10.1109/DCC.1993.253150","DOIUrl":null,"url":null,"abstract":"The goal is to produce codes where the compressed image incorporates classification information without further signal processing. This technique can provide direct low level classification or an efficient front end to more sophisticated full-frame recognition algorithms. Vector quantization is a natural choice because two of its design components, clustering and tree-structured classification methods, have obvious applications to the pure classification problem as well as to the compression problem. The authors explicitly incorporate a Bayes risk component into the distortion measure used for code design in order to permit a tradeoff of mean squared error with classification error. This method is used to analyze simulated data, identify tumors in computerized tomography lung images, and identify man-made regions in aerial images.<<ETX>>","PeriodicalId":315077,"journal":{"name":"[Proceedings] DCC `93: Data Compression Conference","volume":"188 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] DCC `93: Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1993.253150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The goal is to produce codes where the compressed image incorporates classification information without further signal processing. This technique can provide direct low level classification or an efficient front end to more sophisticated full-frame recognition algorithms. Vector quantization is a natural choice because two of its design components, clustering and tree-structured classification methods, have obvious applications to the pure classification problem as well as to the compression problem. The authors explicitly incorporate a Bayes risk component into the distortion measure used for code design in order to permit a tradeoff of mean squared error with classification error. This method is used to analyze simulated data, identify tumors in computerized tomography lung images, and identify man-made regions in aerial images.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合图像分类和图像压缩矢量量化
目标是产生编码,其中压缩图像包含分类信息,而无需进一步的信号处理。该技术可以为更复杂的全帧识别算法提供直接的低级分类或有效的前端。向量量化是一个自然的选择,因为它的两个设计组成部分,聚类和树结构分类方法,在纯分类问题和压缩问题上都有明显的应用。作者明确地将贝叶斯风险成分纳入用于代码设计的失真度量中,以便允许均方误差与分类误差之间的权衡。该方法用于分析模拟数据,识别计算机断层扫描肺图像中的肿瘤,以及识别航空图像中的人造区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of AVL trees to adaptive compression of numerical data Coding theory and regularization Robust, variable bit-rate coding using entropy-biased codebooks Compression of DNA sequences Joint codebook design for summation product-code vector quantizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1