Searching Objects in a Video Footage: Dropping Frames and Object Detection Approach

Tapiwanashe Miranda Sanyanga, Munyaradzi Sydney Chinzvende, T. D. Kavu, John Batani
{"title":"Searching Objects in a Video Footage: Dropping Frames and Object Detection Approach","authors":"Tapiwanashe Miranda Sanyanga, Munyaradzi Sydney Chinzvende, T. D. Kavu, John Batani","doi":"10.4018/IJICTRAME.2019070102","DOIUrl":null,"url":null,"abstract":"Due to the increase in video content being generated from surveillance cameras and filming, videos analysis becomes imperative. Sometimes it becomes tedious to watch a video captured by a surveillance camera for hours, just to find out the desired footage. Current state of-the-art video analysis methods do not address the problem of searching and localizing a particular object in a video using the name of the object as a query and to return only a segment of the video clip showing the instances of that object. In this research the authors make use of combined implementations from existing work and also applied the dropping frames algorithm to produce a shorter, trimmed video clip showing the target object specified by the search tag. The resulting video is short and specific to the object of interest.","PeriodicalId":418993,"journal":{"name":"Int. J. ICT Res. Afr. Middle East","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. ICT Res. Afr. Middle East","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJICTRAME.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the increase in video content being generated from surveillance cameras and filming, videos analysis becomes imperative. Sometimes it becomes tedious to watch a video captured by a surveillance camera for hours, just to find out the desired footage. Current state of-the-art video analysis methods do not address the problem of searching and localizing a particular object in a video using the name of the object as a query and to return only a segment of the video clip showing the instances of that object. In this research the authors make use of combined implementations from existing work and also applied the dropping frames algorithm to produce a shorter, trimmed video clip showing the target object specified by the search tag. The resulting video is short and specific to the object of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在视频片段中搜索对象:丢帧和对象检测方法
由于监控摄像机和拍摄产生的视频内容越来越多,视频分析变得势在必行。有时,为了找到想要的镜头,花几个小时看监控摄像头拍摄的视频变得乏味。当前最先进的视频分析方法不能解决使用对象名称作为查询来搜索和定位视频中的特定对象,并且只返回显示该对象实例的视频剪辑片段的问题。在这项研究中,作者利用现有工作的组合实现,并应用丢帧算法来生成一个更短的、修剪过的视频剪辑,显示搜索标签指定的目标对象。生成的视频简短且针对感兴趣的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expert Review of the Land Registration Framework in the Kingdom of Saudi Arabia Special Education Pre-Service Teachers' Acceptance of Assistive Technology: An Approach of Structural Equation Modeling Review on the State of the Art of Electricity Load Forecasting Methodologies in Developing and Newly-Industrialised Countries: An Initiative to Establish an Effective Load Forecasting Model The Antecedents to the Actual Use of Digital Currencies in Ghana Internet Use and Cybercrime Exposure of Public Secondary School Students in a Nigerian State Capital
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1