Assessing the feasibility of OpenCL CPU implementations for agent-based simulations

Nuno Fachada, A. Rosa
{"title":"Assessing the feasibility of OpenCL CPU implementations for agent-based simulations","authors":"Nuno Fachada, A. Rosa","doi":"10.1145/3078155.3078174","DOIUrl":null,"url":null,"abstract":"Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as a self-determining agent. Large scale emergent behavior in ABMs is population sensitive. As such, it is advisable that the number of agents in a simulation is able to reflect the reality of the system being modeled. This means that in domains such as social modeling, ecology, and biology, systems can contain millions or billions of individuals. Such large scale simulations are only feasible in non-distributed scenarios when the computational power of commodity processors, such as GPUs and multi-core CPUs, is fully exploited. In this paper we evaluate the feasibility of using CPU-oriented OpenCL for high-performance simulations of agent-based models. We compare a CPU-oriented OpenCL implementation of a reference ABM against a parallel Java version of the same model. We show that there are considerable gains in using CPU-based OpenCL for developing and implementing ABMs, with speedups up to 10x over the parallel Java version on a 10-core hyper-threaded CPU.","PeriodicalId":267581,"journal":{"name":"Proceedings of the 5th International Workshop on OpenCL","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078155.3078174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as a self-determining agent. Large scale emergent behavior in ABMs is population sensitive. As such, it is advisable that the number of agents in a simulation is able to reflect the reality of the system being modeled. This means that in domains such as social modeling, ecology, and biology, systems can contain millions or billions of individuals. Such large scale simulations are only feasible in non-distributed scenarios when the computational power of commodity processors, such as GPUs and multi-core CPUs, is fully exploited. In this paper we evaluate the feasibility of using CPU-oriented OpenCL for high-performance simulations of agent-based models. We compare a CPU-oriented OpenCL implementation of a reference ABM against a parallel Java version of the same model. We show that there are considerable gains in using CPU-based OpenCL for developing and implementing ABMs, with speedups up to 10x over the parallel Java version on a 10-core hyper-threaded CPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估基于代理模拟的OpenCL CPU实现的可行性
基于代理的建模(ABM)是一种自下而上的建模方法,其中被建模的系统的每个实体都被唯一地表示为一个自决定的代理。人工智能中的大规模突现行为是种群敏感的。因此,建议模拟中的代理数量能够反映被建模系统的实际情况。这意味着在社会建模、生态学和生物学等领域,系统可以包含数百万或数十亿个个体。这种大规模的模拟只有在gpu和多核cpu等商用处理器的计算能力得到充分利用的非分布式场景下才可行。在本文中,我们评估了使用面向cpu的OpenCL对基于代理的模型进行高性能仿真的可行性。我们将参考ABM的面向cpu的OpenCL实现与同一模型的并行Java版本进行比较。我们展示了使用基于CPU的OpenCL来开发和实现abm有相当大的好处,在10核超线程CPU上,与并行Java版本相比,速度提高了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavefront Parallel Processing on GPUs with an Application to Video Encoding Algorithms Modeling Explicit SIMD Programming With Subgroup Functions OpenCL Interoperability with OpenVX Graphs Challenges and Opportunities in Native GPU Debugging OpenCL in Scientific High Performance Computing: The Good, the Bad, and the Ugly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1