{"title":"Class Attention Map Distillation for Efficient Semantic Segmentation","authors":"Nader Karimi Bavandpour, S. Kasaei","doi":"10.1109/MVIP49855.2020.9116875","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method for capturing the information of a powerful and trained deep convolutional neural network and distilling it into a training smaller network is proposed. This is the first time that a saliency map method is employed to extract useful knowledge from a convolutional neural network for distillation. This method, despite of many others which work on final layers, can successfully extract suitable information for distillation from intermediate layers of a network by making class specific attention maps and then forcing the student network to mimic producing those attentions. This novel knowledge distillation training is implemented using state-of-the-art DeepLab and PSPNet segmentation networks and its effectiveness is shown by experiments on the standard Pascal Voc 2012 dataset.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a novel method for capturing the information of a powerful and trained deep convolutional neural network and distilling it into a training smaller network is proposed. This is the first time that a saliency map method is employed to extract useful knowledge from a convolutional neural network for distillation. This method, despite of many others which work on final layers, can successfully extract suitable information for distillation from intermediate layers of a network by making class specific attention maps and then forcing the student network to mimic producing those attentions. This novel knowledge distillation training is implemented using state-of-the-art DeepLab and PSPNet segmentation networks and its effectiveness is shown by experiments on the standard Pascal Voc 2012 dataset.