A Ranking-Based Evolutionary Algorithm for Constrained Optimization Problems

Yibo Hu, Yiu-ming Cheung, Yuping Wang
{"title":"A Ranking-Based Evolutionary Algorithm for Constrained Optimization Problems","authors":"Yibo Hu, Yiu-ming Cheung, Yuping Wang","doi":"10.1109/ICNC.2007.129","DOIUrl":null,"url":null,"abstract":"In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束优化问题的基于排序的进化算法
在约束优化问题中,进化算法通常使用惩罚函数来处理约束,但惩罚参数难以控制。因此,本文提出了一种新的约束处理方案。它自适应地定义了一个扩展可行域,该扩展可行域不仅包括所有可行解,还包括在可行域边界附近的一些不可行解。在此基础上,构造了一种新的基于随机排序的适应度函数,同时提出了一种新的交叉算子,该算子在一般情况下可以产生更多的优秀个体。据此,提出了一种新的求解约束优化问题的进化算法。仿真结果表明,该算法在四个基准问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1