A Deep Learning Approach For Airport Runway Detection and Localization From Satellite Imagery

Amine Khelifi, Mahmut Gemici, Giuseppina Carannante, C. Johnson, N. Bouaynaya
{"title":"A Deep Learning Approach For Airport Runway Detection and Localization From Satellite Imagery","authors":"Amine Khelifi, Mahmut Gemici, Giuseppina Carannante, C. Johnson, N. Bouaynaya","doi":"10.1109/ISCC58397.2023.10217868","DOIUrl":null,"url":null,"abstract":"The US lacks a complete national database of private prior permission required airports due to insufficient federal requirements for regular updates. The initial data entry into the system is usually not refreshed by the Federal Aviation Administration (FAA) or local state Department of Transportation. However, outdated or inaccurate information poses risks to aviation safety. This paper suggests a deep learning (DL) approach using Google Earth satellite imagery to identify and locate airport landing sites. The study aims to demonstrate the potential of DL algorithms in processing satellite imagery and improve the precision of the FAA's runway database. We evaluate the performance of Faster Region-based Convolutional Neural Networks using advanced backbone architectures, namely Resnet101 and Resnet-X152, in the detection of airport runways. We incorporate negative samples, i.e., highways images, to enhance the performance of the model. Our simulations reveal that Resnet-X152 outperformed Resnet101 achieving a mean average precision of 76%.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The US lacks a complete national database of private prior permission required airports due to insufficient federal requirements for regular updates. The initial data entry into the system is usually not refreshed by the Federal Aviation Administration (FAA) or local state Department of Transportation. However, outdated or inaccurate information poses risks to aviation safety. This paper suggests a deep learning (DL) approach using Google Earth satellite imagery to identify and locate airport landing sites. The study aims to demonstrate the potential of DL algorithms in processing satellite imagery and improve the precision of the FAA's runway database. We evaluate the performance of Faster Region-based Convolutional Neural Networks using advanced backbone architectures, namely Resnet101 and Resnet-X152, in the detection of airport runways. We incorporate negative samples, i.e., highways images, to enhance the performance of the model. Our simulations reveal that Resnet-X152 outperformed Resnet101 achieving a mean average precision of 76%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卫星图像的机场跑道检测与定位的深度学习方法
由于联邦政府对定期更新的要求不够,美国缺乏一个完整的私人事先许可机场的国家数据库。进入系统的初始数据通常不会由联邦航空管理局(FAA)或当地州交通部更新。然而,过时或不准确的信息对航空安全构成风险。本文提出了一种使用谷歌地球卫星图像识别和定位机场着陆点的深度学习(DL)方法。该研究旨在展示DL算法在处理卫星图像方面的潜力,并提高FAA跑道数据库的精度。我们使用先进的骨干架构,即Resnet101和Resnet-X152,评估了更快的基于区域的卷积神经网络在机场跑道检测中的性能。我们加入负样本,即高速公路图像,以提高模型的性能。我们的模拟表明,Resnet-X152优于Resnet101,达到76%的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1