Off-line Handwritten Korean Letter using Principle Component Analysis and Back Propagation Neural Network

D. Nasien, Feri Candra, Delsavonita, D. Yulianti, Rahmat Rizal Andhi, M. H. Adiya
{"title":"Off-line Handwritten Korean Letter using Principle Component Analysis and Back Propagation Neural Network","authors":"D. Nasien, Feri Candra, Delsavonita, D. Yulianti, Rahmat Rizal Andhi, M. H. Adiya","doi":"10.1109/ICon-EEI.2018.8784136","DOIUrl":null,"url":null,"abstract":"This paper describes a proposed algorithm for recognition of Korean Letters to the Latin language using Principle Component Analysis (PCA) and Back Propagation-Neural Network (BP-NN). The proposed algorithm uses input in the form of image of Korean letters in original 65×65 pixels that is taken from itself. Then, it will be done some processes namely, pre-processing converts image pixel into binary image 15×15 pixels. Further, it transforms from image Red Green Blue (RGB) into binary. Lastly, noise removal from the image. The image will be extracted to produce the image feature. The feature should be processed firstly using Principle Components Analysis (PCA). PCA is used to reduce dimension of image feature before entering classification stage. Classification stage uses a method that called BP-NN. Architecture of ANN uses three hidden layers. Each layer consists of 20, 20 and 5 neurons, and 1 neuron output. The proposed algorithm uses data sampling that is Korean vowels, are obtained from 25 different font types. Next, each font consists of normal sampling and bold sampling. Total data reaches 500 sampling. The data comprises 70% data training and 30% data testing. The result of experiments show that accuracy level is 95%.","PeriodicalId":114952,"journal":{"name":"2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICon-EEI.2018.8784136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a proposed algorithm for recognition of Korean Letters to the Latin language using Principle Component Analysis (PCA) and Back Propagation-Neural Network (BP-NN). The proposed algorithm uses input in the form of image of Korean letters in original 65×65 pixels that is taken from itself. Then, it will be done some processes namely, pre-processing converts image pixel into binary image 15×15 pixels. Further, it transforms from image Red Green Blue (RGB) into binary. Lastly, noise removal from the image. The image will be extracted to produce the image feature. The feature should be processed firstly using Principle Components Analysis (PCA). PCA is used to reduce dimension of image feature before entering classification stage. Classification stage uses a method that called BP-NN. Architecture of ANN uses three hidden layers. Each layer consists of 20, 20 and 5 neurons, and 1 neuron output. The proposed algorithm uses data sampling that is Korean vowels, are obtained from 25 different font types. Next, each font consists of normal sampling and bold sampling. Total data reaches 500 sampling. The data comprises 70% data training and 30% data testing. The result of experiments show that accuracy level is 95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析和反向传播神经网络的离线手写韩文信件
本文提出了一种基于主成分分析(PCA)和反向传播神经网络(BP-NN)的韩语字母识别算法。该算法使用从自身提取的原始65×65像素的韩文字母图像作为输入。然后进行预处理,将图像像素转换为二值图像15×15像素。进一步,它将图像从红绿蓝(RGB)转换成二值。最后,去除图像中的噪声。图像将被提取以产生图像特征。首先使用主成分分析(PCA)对特征进行处理。在进入分类阶段之前,采用PCA对图像特征进行降维处理。分类阶段使用一种称为BP-NN的方法。人工神经网络的架构使用了三个隐藏层。每层由20、20、5个神经元组成,1个神经元输出。该算法使用数据采样,即从25种不同的字体中获得韩语元音。接下来,每种字体由正常采样和粗体采样组成。总数据达到500个采样。数据由70%的数据训练和30%的数据测试组成。实验结果表明,该方法的准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition Measurement Design of Sensor Node for Landslide Disaster Early Warning System Comparison of MPPT Fuzzy Logic Controller Based on Perturb and Observe (P&O) and Incremental Conductance (InC) Algorithm On Buck-Boost Converter Microstrip Antenna Design H-Shaped Planar Array 4 Elements Using Circular Slot for Fixed WiMAX Network 3.5 GHz Frequency Building Domain Ontology from Semi-formal Modelling Language: Business Process Model and Notation (BPMN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1