Wide-area disaster surveillance using electric vehicles and helicopters

K. Mase
{"title":"Wide-area disaster surveillance using electric vehicles and helicopters","authors":"K. Mase","doi":"10.1109/PIMRC.2013.6666748","DOIUrl":null,"url":null,"abstract":"In this study, we assume that a number of electric vehicles (EVs), each with its respective partner unmanned electric helicopter (EH), are cooperatively engaged in wide-area disaster surveillance and data delivery to the center node. We present a simple model for area zoning assuming a wide square area and one-dimensional EV placement. Specifically, each EV-EH pair is in charge of a non-overlapping sub-area surveillance, and the surveillance data are temporarily stored in the EV. The partner EH is used to transfer the surveillance data, which are obtained in the sub-area in addition to those transferred from the immediate downstream EV, to the upstream EV via carry and forward. We present two principles for time-efficient surveillance and data transfer, that is, task-balanced zoning and synchronous data handover. Numerical examples are provided to show that the task-balanced zoning yields a slightly lower cycle time than does the uniform zoning, and synchronous handover results in significantly shorter data delivery times than does asynchronous handover.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this study, we assume that a number of electric vehicles (EVs), each with its respective partner unmanned electric helicopter (EH), are cooperatively engaged in wide-area disaster surveillance and data delivery to the center node. We present a simple model for area zoning assuming a wide square area and one-dimensional EV placement. Specifically, each EV-EH pair is in charge of a non-overlapping sub-area surveillance, and the surveillance data are temporarily stored in the EV. The partner EH is used to transfer the surveillance data, which are obtained in the sub-area in addition to those transferred from the immediate downstream EV, to the upstream EV via carry and forward. We present two principles for time-efficient surveillance and data transfer, that is, task-balanced zoning and synchronous data handover. Numerical examples are provided to show that the task-balanced zoning yields a slightly lower cycle time than does the uniform zoning, and synchronous handover results in significantly shorter data delivery times than does asynchronous handover.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用电动车辆和直升机进行广域灾难监视
在本研究中,我们假设许多电动汽车(ev)及其各自的伙伴无人驾驶电动直升机(EH)合作从事广域灾害监测和数据传输到中心节点。我们提出了一个简单的区域划分模型,假设一个宽的方形区域和一维的电动汽车布局。具体而言,每个EV- eh对负责一个不重叠的子区域监测,监测数据临时存储在EV中。伙伴EH用于将在子区域获得的监测数据,以及从直接下游EV传输的监测数据,通过carry和forward传输到上游EV。我们提出了两种高效监控和数据传输的原则,即任务均衡分区和同步数据切换。数值算例表明,任务均衡分区的周期时间比统一分区略短,同步切换的数据传递时间明显短于异步切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validation of fog models for FSO under laboratory controlled conditions EWMA-triggered waterfilling for reduced-complexity resource management in ad-hoc connections Sleep scheduling in IEEE 802.16j relay networks A comparison of implicit and explicit channel feedback methods for MU-MIMO WLAN systems Optimization of collaborating secondary users in a cooperative sensing under noise uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1