Exploiting Multiple Recommenders to Improve Group Recommendation

Samuel E. L. Oliveira, P. Brum, A. Lacerda, G. Pappa
{"title":"Exploiting Multiple Recommenders to Improve Group Recommendation","authors":"Samuel E. L. Oliveira, P. Brum, A. Lacerda, G. Pappa","doi":"10.1109/BRACIS.2018.00063","DOIUrl":null,"url":null,"abstract":"Group recommendation methods deal with scenarios where a group is the target of recommendation instead of a single user. An initial approach followed by these methods was to aggregate the rankings generated to each individual user of the group by traditional recommender systems. This approach was replaced to more sophisticated methods, but the potential and simplicity of the aggregation strategies were underexplored. This paper proposes to use multiple recommenders to generate recommendations to single group members before aggregating their recommendations. We show that this strategy significantly improves the results of aggregating single recommenders while overcoming the problem of selecting the best recommendation algorithm. We also propose five heuristics to select a subset of the available recommenders to be aggregated. We tested heuristics in seven dataset variations, showing that by using half of the available algorithms we can achieve results similar or better than those obtained by the whole set.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Group recommendation methods deal with scenarios where a group is the target of recommendation instead of a single user. An initial approach followed by these methods was to aggregate the rankings generated to each individual user of the group by traditional recommender systems. This approach was replaced to more sophisticated methods, but the potential and simplicity of the aggregation strategies were underexplored. This paper proposes to use multiple recommenders to generate recommendations to single group members before aggregating their recommendations. We show that this strategy significantly improves the results of aggregating single recommenders while overcoming the problem of selecting the best recommendation algorithm. We also propose five heuristics to select a subset of the available recommenders to be aggregated. We tested heuristics in seven dataset variations, showing that by using half of the available algorithms we can achieve results similar or better than those obtained by the whole set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多推荐器改进群组推荐
组推荐方法处理的场景是,一个组是推荐的目标,而不是单个用户。这些方法遵循的最初方法是将传统推荐系统生成的组中每个用户的排名汇总起来。这种方法被更复杂的方法所取代,但是聚合策略的潜力和简单性没有得到充分的探索。本文提出在聚合推荐之前,先使用多个推荐器生成对单个组成员的推荐。我们的研究表明,该策略在克服了选择最佳推荐算法的问题的同时,显著提高了单个推荐的聚合结果。我们还提出了五种启发式方法来选择可用推荐的子集进行聚合。我们在七个不同的数据集中测试了启发式算法,结果表明,通过使用一半可用算法,我们可以获得与整个集相似或更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1