Heart Disease Prediction Model Using Varied Classifiers with Score-Level Fusion

Mohammad Haider Syed
{"title":"Heart Disease Prediction Model Using Varied Classifiers with Score-Level Fusion","authors":"Mohammad Haider Syed","doi":"10.4018/ijsppc.313587","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a novel heart disease prediction model. Originally, the input data is subjected for preprocessing, in which the data cleaning takes place. The features like statistical, higher order statistical features, and symmetrical uncertainty are extracted from the preprocessed data. Then, the selected features are subjected to the classification process with an ensemble model that combines the classifiers like deep belief network (DBN), random forest (RF), and neural network (NN). At last, the score level fusion is carried out to provide the final output. To make the classification more precise and accurate, it is intended to tune the weights of DBN more optimally. A new self-adaptive honey bee mating optimization (SAHBMO) algorithm is implemented in this work for this optimal tuning. Finally, the performance of the presented scheme is computed over the existing approaches in terms of different metrics.","PeriodicalId":344690,"journal":{"name":"Int. J. Secur. Priv. Pervasive Comput.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Secur. Priv. Pervasive Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsppc.313587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to introduce a novel heart disease prediction model. Originally, the input data is subjected for preprocessing, in which the data cleaning takes place. The features like statistical, higher order statistical features, and symmetrical uncertainty are extracted from the preprocessed data. Then, the selected features are subjected to the classification process with an ensemble model that combines the classifiers like deep belief network (DBN), random forest (RF), and neural network (NN). At last, the score level fusion is carried out to provide the final output. To make the classification more precise and accurate, it is intended to tune the weights of DBN more optimally. A new self-adaptive honey bee mating optimization (SAHBMO) algorithm is implemented in this work for this optimal tuning. Finally, the performance of the presented scheme is computed over the existing approaches in terms of different metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于评分水平融合的不同分类器的心脏病预测模型
本文旨在介绍一种新的心脏病预测模型。最初,输入数据要进行预处理,在此过程中进行数据清理。从预处理后的数据中提取统计特征、高阶统计特征和对称不确定性等特征。然后,使用结合深度信念网络(DBN)、随机森林(RF)和神经网络(NN)等分类器的集成模型对选中的特征进行分类。最后进行评分等级融合,提供最终输出。为了使分类更加精确和准确,我们打算更优化地调整DBN的权重。本文实现了一种新的自适应蜜蜂交配优化算法(SAHBMO)。最后,根据不同的度量对现有方法的性能进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Descriptive Study on Metaverse: Cybersecurity Risks, Controls, and Regulatory Framework A Optimized Taxonomy on Spot Sale Services Using Mathematical Methodology Trends in Remote User Authentication Based on Smart Card and External Memory Analysis of a Multiple-Shift Computer-Based Examination Evaluation System DNA-Based E-Voting System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1