{"title":"Digital filter synthesis considering multiple adder graphs for a coefficient","authors":"Jeong Han, I. Park","doi":"10.1109/ICCD.2008.4751879","DOIUrl":null,"url":null,"abstract":"In this paper, a new FIR digital filter synthesis algorithm is proposed to consider multiple adder graphs for a coefficient. The proposed algorithm selects an adder graph that can be maximally sharable with the remaining coefficients, while previous dependence-graph algorithms consider only one adder graph when implementing a coefficient. In addition, we propose an addition reordering technique to reduce the computational overhead of finding multiple adder graphs. By using the proposed technique, multiple adder graphs are efficiently generated from a seed adder graph obtained by using previous dependence-graph algorithms. Experimental results show that the proposed algorithm reduces the hardware cost of FIR filters by 23% and 3.4% on average compared to the Hartely and RAGn-hybrid algorithms.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a new FIR digital filter synthesis algorithm is proposed to consider multiple adder graphs for a coefficient. The proposed algorithm selects an adder graph that can be maximally sharable with the remaining coefficients, while previous dependence-graph algorithms consider only one adder graph when implementing a coefficient. In addition, we propose an addition reordering technique to reduce the computational overhead of finding multiple adder graphs. By using the proposed technique, multiple adder graphs are efficiently generated from a seed adder graph obtained by using previous dependence-graph algorithms. Experimental results show that the proposed algorithm reduces the hardware cost of FIR filters by 23% and 3.4% on average compared to the Hartely and RAGn-hybrid algorithms.