Catarina Maçãs, P. Cruz, Hugo Amaro, Evgheni Polisciuc, Tiago Carvalho, Frederico Santos, P. Machado
{"title":"Time-series Application on Big Data - Visualization of Consumption in Supermarkets","authors":"Catarina Maçãs, P. Cruz, Hugo Amaro, Evgheni Polisciuc, Tiago Carvalho, Frederico Santos, P. Machado","doi":"10.5220/0005307702390246","DOIUrl":null,"url":null,"abstract":"The evolution of technology is changing how people work within organizations. Information about customer consumption leads to a new era of business intelligence, wherein Big Data is analyzed to improve business. In this project we apply information visualization in the context of Big Data for product’s consumption. The aim of this project is to visualize the evolution of consumption, to detect typical and periodic behaviors and emphasize the atypical ones. In this article we present our workflow—from finding periodic behaviors to create a final visualization using time-series and small-multiples techniques. With the final visualization we are able to show consumption behaviors and highlight the deviations from typical consumption days.","PeriodicalId":326087,"journal":{"name":"International Conference on Information Visualization Theory and Applications","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Visualization Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005307702390246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The evolution of technology is changing how people work within organizations. Information about customer consumption leads to a new era of business intelligence, wherein Big Data is analyzed to improve business. In this project we apply information visualization in the context of Big Data for product’s consumption. The aim of this project is to visualize the evolution of consumption, to detect typical and periodic behaviors and emphasize the atypical ones. In this article we present our workflow—from finding periodic behaviors to create a final visualization using time-series and small-multiples techniques. With the final visualization we are able to show consumption behaviors and highlight the deviations from typical consumption days.