Kalman Filter for Predictive Maintenance and Anomaly Detection

Sirarpi Hovsepyan, J. Papadoudis, Paolo Mercorelli
{"title":"Kalman Filter for Predictive Maintenance and Anomaly Detection","authors":"Sirarpi Hovsepyan, J. Papadoudis, Paolo Mercorelli","doi":"10.1109/ICCC51557.2021.9454654","DOIUrl":null,"url":null,"abstract":"There are various strategies in optimization of anomaly detection problem on sensor data. This paper describes a Gaussian Mixture Model (GMM) and Kalman filter to detect outliers within the sensor data of wire bonding. With limitation on data samples and high dimensional parameters, Principal Component Analysis (PCA) helped to reduce dimensionality without losing important information. The Expectation-Maximization algorithm for estimating Gaussian distribution parameters of GMM provided us a clustering model to fit our data. A weighted distance from the cluster center in the employed GMM model is applied to tune noise variances on measurement errors. The proposed method is validated using real measurements in the context of a manufacturing system.","PeriodicalId":339049,"journal":{"name":"2021 22nd International Carpathian Control Conference (ICCC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51557.2021.9454654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are various strategies in optimization of anomaly detection problem on sensor data. This paper describes a Gaussian Mixture Model (GMM) and Kalman filter to detect outliers within the sensor data of wire bonding. With limitation on data samples and high dimensional parameters, Principal Component Analysis (PCA) helped to reduce dimensionality without losing important information. The Expectation-Maximization algorithm for estimating Gaussian distribution parameters of GMM provided us a clustering model to fit our data. A weighted distance from the cluster center in the employed GMM model is applied to tune noise variances on measurement errors. The proposed method is validated using real measurements in the context of a manufacturing system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测维护与异常检测的卡尔曼滤波
传感器数据异常检测问题的优化策略多种多样。本文提出了一种高斯混合模型和卡尔曼滤波来检测焊线传感器数据中的异常值。在数据样本有限、参数高维的情况下,主成分分析(PCA)可以在不丢失重要信息的前提下进行降维。期望最大化算法用于估计GMM的高斯分布参数,为我们提供了一个拟合数据的聚类模型。在GMM模型中,利用到聚类中心的加权距离来调节噪声对测量误差的影响。该方法在制造系统的实际测量环境中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
APF-based Control for Obstacle Avoidance in Smart Electric Wheelchair Navigation Human-Machine Interface for Controlling a Light Robotic Arm by Persons with Special Needs Thin Plate Active Vibration Control Parametric Optimization of a Second Order Time Delay System with a PID-Controller Desired Model Method and Disturbance Observer for Integrating Plant with Time Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1