Identification of Malaria Disease Using Machine Learning Models

S. Kuzhaloli, S. Thenappan, Premavathi T, V. Nivedita, M. Mageshbabu, S. Navaneethan
{"title":"Identification of Malaria Disease Using Machine Learning Models","authors":"S. Kuzhaloli, S. Thenappan, Premavathi T, V. Nivedita, M. Mageshbabu, S. Navaneethan","doi":"10.1109/ICECCT56650.2023.10179665","DOIUrl":null,"url":null,"abstract":"Malaria, caused by Plasmodium parasites in the bloodstream spread by infected mosquitoes, is a highly severe and sometimes deadly disease. Image analysis and machine learning can enhance diagnosis by quantifying parasitemia on blood slides. The building of an autonomous, accurate, and effective model can significantly reduce the need for trained laborers. This article discusses computer-assisted approaches for finding malaria parasites in blood smear images. These procedures consist of obtaining the dataset, preprocessing the images, segmenting the red blood cells, extracting and choosing features, and classifying the images. The approach is based on well-known Convolutional neural network (CNN) models of Plasmodium parasites and erythrocytes. The trained CNN and VGG-19 are given images of infected and uninfected erythrocytes from the same dataset. VGG 19 gives 96% detection accuracy where CNN achieves 94%.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria, caused by Plasmodium parasites in the bloodstream spread by infected mosquitoes, is a highly severe and sometimes deadly disease. Image analysis and machine learning can enhance diagnosis by quantifying parasitemia on blood slides. The building of an autonomous, accurate, and effective model can significantly reduce the need for trained laborers. This article discusses computer-assisted approaches for finding malaria parasites in blood smear images. These procedures consist of obtaining the dataset, preprocessing the images, segmenting the red blood cells, extracting and choosing features, and classifying the images. The approach is based on well-known Convolutional neural network (CNN) models of Plasmodium parasites and erythrocytes. The trained CNN and VGG-19 are given images of infected and uninfected erythrocytes from the same dataset. VGG 19 gives 96% detection accuracy where CNN achieves 94%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习模型识别疟疾疾病
疟疾是由血液中的疟原虫引起的,由受感染的蚊子传播,是一种非常严重,有时甚至致命的疾病。图像分析和机器学习可以通过定量血载玻片上的寄生虫血症来增强诊断。建立一个自主、准确、有效的模型可以显著减少对训练有素的劳动力的需求。本文讨论了在血液涂片图像中寻找疟疾寄生虫的计算机辅助方法。这些步骤包括数据集的获取、图像的预处理、红细胞的分割、特征的提取和选择、图像的分类。该方法是基于众所周知的卷积神经网络(CNN)模型的疟原虫寄生虫和红细胞。训练后的CNN和VGG-19被给予来自同一数据集的感染和未感染红细胞的图像。VGG 19的检测准确率为96%,CNN的检测准确率为94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model of Markovian Queue with Catastrophe, Restoration and Balking Nibble Based Two Bit Invert Coding Technique for Serial Network on Chip Links Hesitant Triangular Fuzzy Dombi Operators and Its Applications Fuel Cost Optimization of Coal-Fired Power Plants using Coal Blending Proportions An Efficient Classification for Light Motor Vehicles using CatBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1