Experimental Validation and Design Refinement of a Disposable, Articulated Surgical Instrument

Monica Bomze, C. Nelson
{"title":"Experimental Validation and Design Refinement of a Disposable, Articulated Surgical Instrument","authors":"Monica Bomze, C. Nelson","doi":"10.1115/dmd2022-1011","DOIUrl":null,"url":null,"abstract":"\n In previous work, a proof-of-concept articulated instrument for minimally invasive laparoscopic surgery (MILS) was proposed to overcome limitations of existing instruments. In this paper, experimental validation is pursued to satisfy constraints on biocompatibility, cost, stiffness, and durability. It was found that the instrument exhibits minimal bending deflection of approximately 3mm under the maximum load experienced during MILS, has favorable workspace volume of 679cm3, and has adequate joint durability of over 700 bending cycles. Overall, this paper demonstrates that the instrument is able to meet many of the criteria required of minimally invasive laparoscopic surgery devices and addresses many of the shortcomings of traditionally used instruments.","PeriodicalId":236105,"journal":{"name":"2022 Design of Medical Devices Conference","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2022-1011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In previous work, a proof-of-concept articulated instrument for minimally invasive laparoscopic surgery (MILS) was proposed to overcome limitations of existing instruments. In this paper, experimental validation is pursued to satisfy constraints on biocompatibility, cost, stiffness, and durability. It was found that the instrument exhibits minimal bending deflection of approximately 3mm under the maximum load experienced during MILS, has favorable workspace volume of 679cm3, and has adequate joint durability of over 700 bending cycles. Overall, this paper demonstrates that the instrument is able to meet many of the criteria required of minimally invasive laparoscopic surgery devices and addresses many of the shortcomings of traditionally used instruments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一次性关节式手术器械的实验验证与设计改进
在之前的工作中,提出了一种用于微创腹腔镜手术(MILS)的概念验证铰接式器械,以克服现有器械的局限性。为了满足生物相容性、成本、刚度和耐久性的限制,本文进行了实验验证。研究发现,该仪器在mls过程中承受的最大载荷下,弯曲挠度最小约为3mm,工作空间体积为679cm3,并且具有超过700次弯曲循环的足够关节耐久性。总体而言,本文证明该仪器能够满足微创腹腔镜手术设备所需的许多标准,并解决了传统使用仪器的许多缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Communicating Cybersecurity and Privacy Design Attributes through Privacy Labeling of Consumer Electronic Medical Devices A Novel Tool for Auricle Retraction During Closure of Post-Auricular Incisions Development and Characterization of Biostable Hydrogel Robotic Actuators for Implantable Devices: Tendon Actuated Gelatin Non-Invasive Diagnosis of Deep Vein Thrombosis to Expedite Treatment and Prevent Pulmonary Embolism During Gestation Development of an Epicardial Mapping Tank for Noninvasive Electrical Mapping of Ex Vivo Large Mammalian Hearts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1