J. P. Grossman, J. Salmon, C. R. Ho, D. Ierardi, Brian Towles, Brannon Batson, Jochen Spengler, Stanley C. Wang, Rolf Mueller, Michael Theobald, C. Young, Joseph Gagliardo, Martin M. Deneroff, R. Dror, D. Shaw
{"title":"Hierarchical simulation-based verification of Anton, a special-purpose parallel machine","authors":"J. P. Grossman, J. Salmon, C. R. Ho, D. Ierardi, Brian Towles, Brannon Batson, Jochen Spengler, Stanley C. Wang, Rolf Mueller, Michael Theobald, C. Young, Joseph Gagliardo, Martin M. Deneroff, R. Dror, D. Shaw","doi":"10.1109/ICCD.2008.4751883","DOIUrl":null,"url":null,"abstract":"One of the major design verification challenges in the development of Anton, a massively parallel special-purpose machine for molecular dynamics, was to provide evidence that computations spanning more than a quadrillion clock cycles will produce valid scientific results. Our verification methodology addressed this problem by using a hierarchy of RTL, architectural, and numerical simulations. Block- and chip-level RTL models were verified by means of extensive co-simulation with a detailed C++ architectural simulator, ensuring that the RTL models could perform the same molecular dynamics computations as the architectural simulator. The output of the architectural simulator was compared to a parallelized numerical simulator that produces bitwise identical results to Anton, and is fast enough to verify the long-term numerical stability of computations on Anton. These explicit couplings between adjacent levels of the simulation hierarchy created a continuous verification chain from molecular dynamics to individual logic gates.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
One of the major design verification challenges in the development of Anton, a massively parallel special-purpose machine for molecular dynamics, was to provide evidence that computations spanning more than a quadrillion clock cycles will produce valid scientific results. Our verification methodology addressed this problem by using a hierarchy of RTL, architectural, and numerical simulations. Block- and chip-level RTL models were verified by means of extensive co-simulation with a detailed C++ architectural simulator, ensuring that the RTL models could perform the same molecular dynamics computations as the architectural simulator. The output of the architectural simulator was compared to a parallelized numerical simulator that produces bitwise identical results to Anton, and is fast enough to verify the long-term numerical stability of computations on Anton. These explicit couplings between adjacent levels of the simulation hierarchy created a continuous verification chain from molecular dynamics to individual logic gates.