CAP’NN: Class-Aware Personalized Neural Network Inference

Maedeh Hemmat, Joshua San Miguel, A. Davoodi
{"title":"CAP’NN: Class-Aware Personalized Neural Network Inference","authors":"Maedeh Hemmat, Joshua San Miguel, A. Davoodi","doi":"10.1109/DAC18072.2020.9218741","DOIUrl":null,"url":null,"abstract":"We propose CAP’NN, a framework for Class-Aware Personalized Neural Network Inference. CAP’NN prunes an already-trained neural network model based on the preferences of individual users. Specifically, by adapting to the subset of output classes that each user is expected to encounter, CAP’NN is able to prune not only ineffectual neurons but also miseffectual neurons that confuse classification, without the need to retrain the network. CAP’NN achieves up to 50% model size reduction while actually improving the top-l(5) classification accuracy by up to 2.3%(3.2%) when the user only encounters a subset of VGG-16 classes.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose CAP’NN, a framework for Class-Aware Personalized Neural Network Inference. CAP’NN prunes an already-trained neural network model based on the preferences of individual users. Specifically, by adapting to the subset of output classes that each user is expected to encounter, CAP’NN is able to prune not only ineffectual neurons but also miseffectual neurons that confuse classification, without the need to retrain the network. CAP’NN achieves up to 50% model size reduction while actually improving the top-l(5) classification accuracy by up to 2.3%(3.2%) when the user only encounters a subset of VGG-16 classes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类别感知的个性化神经网络推理
我们提出了一种基于类感知的个性化神经网络推理框架CAP 'NN。CAP 'NN根据个人用户的偏好对已经训练好的神经网络模型进行修剪。具体来说,通过适应每个用户预期会遇到的输出类的子集,CAP 'NN不仅能够修剪无效的神经元,还能够修剪混淆分类的无效神经元,而无需重新训练网络。当用户只遇到VGG-16类的一个子集时,CAP 'NN实现了高达50%的模型尺寸缩减,同时实际上将top- 1(5)分类精度提高了2.3%(3.2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1