Visual Recognition of Drill Cuttings Lithologies Using Convolutional Neural Networks to Aid Reservoir Characterisation

M. Kathrada, B. J. Adillah
{"title":"Visual Recognition of Drill Cuttings Lithologies Using Convolutional Neural Networks to Aid Reservoir Characterisation","authors":"M. Kathrada, B. J. Adillah","doi":"10.2118/196675-ms","DOIUrl":null,"url":null,"abstract":"\n There are a vast number of reservoirs with drill cuttings and core images that have classification problems associated with them. This could be due to the images not being classified in the first place, or the images may be available but the interpretation reports could be missing. Another problem is that images from different wells could be interpreted by different wellsite geologists/sedimentologists and hence result in an inconsistent classification scheme. Finally, there could also be the problem of some images being incorrectly classified. Ergo it would be desirable to have an unbiased objective system that could overcome all of these issues. Step in convolutional neural networks. Advances during this decade in using convolutional neural networks for visual recognition of discriminately different objects means that now object recognition can be achieved to a significant extent. Once the network is trained on a representative set of lithological classes, then such a system just needs to be fed the raw drill cuttings or core images that it has not seen before and it will automatically assign a lithological class to each image and an associated probability of the image belonging to that class. In so doing, images below a certain probability threshold can be automatically flagged for further human investigation. The benefit of such a system would be to improve reservoir understanding by having all available images classified in a consistent manner hence keeping the characterization consistent as well. It would further help to reduce the time taken to get human expertise to complete the task, as well as the associated cost.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196675-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There are a vast number of reservoirs with drill cuttings and core images that have classification problems associated with them. This could be due to the images not being classified in the first place, or the images may be available but the interpretation reports could be missing. Another problem is that images from different wells could be interpreted by different wellsite geologists/sedimentologists and hence result in an inconsistent classification scheme. Finally, there could also be the problem of some images being incorrectly classified. Ergo it would be desirable to have an unbiased objective system that could overcome all of these issues. Step in convolutional neural networks. Advances during this decade in using convolutional neural networks for visual recognition of discriminately different objects means that now object recognition can be achieved to a significant extent. Once the network is trained on a representative set of lithological classes, then such a system just needs to be fed the raw drill cuttings or core images that it has not seen before and it will automatically assign a lithological class to each image and an associated probability of the image belonging to that class. In so doing, images below a certain probability threshold can be automatically flagged for further human investigation. The benefit of such a system would be to improve reservoir understanding by having all available images classified in a consistent manner hence keeping the characterization consistent as well. It would further help to reduce the time taken to get human expertise to complete the task, as well as the associated cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卷积神经网络对钻屑岩性进行视觉识别,以帮助油藏表征
有大量的岩屑和岩心图像的储层存在与之相关的分类问题。这可能是由于图像首先没有被分类,或者图像可能可用,但解释报告可能缺失。另一个问题是,来自不同井的图像可能由不同井场地质学家/沉积学家解释,从而导致分类方案不一致。最后,还可能存在一些图像被错误分类的问题。因此,我们希望有一个能够克服所有这些问题的公正客观的系统。卷积神经网络的一步。在这十年中,卷积神经网络用于区分不同物体的视觉识别的进展意味着现在可以在很大程度上实现物体识别。一旦网络在一组具有代表性的岩性类别上进行了训练,那么这样的系统只需要输入以前没有见过的原始钻屑或岩心图像,它就会自动为每张图像分配一个岩性类别,并计算出该图像属于该类别的相关概率。这样,低于一定概率阈值的图像可以被自动标记,供人类进一步调查。这种系统的好处是通过将所有可用图像以一致的方式分类,从而保持特征的一致性,从而提高对储层的了解。这将进一步有助于减少获得人力专业知识来完成任务所需的时间,以及相关的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Middle East Karst Carbonate: An Integrated Workflow For Prediction Of Karst Enhancement Distribution Potential Applicability of Miscible N2 Flooding in High-Temperature Abu Dhabi Reservoir Modelling Dispersed Chemical Droplets Injection in the Gas Stream for EOR Applications A Collaborative Approach to Risk Assessment and Mitigation of Pre-Production Cross-Flow for a Multi-Billion Dollar Sour Field Development Project in the Sultanate of Oman: A Case Study Multidisciplinary Approach for Unconventional Reservoirs Characterisation by Integrating Wireline Openhole Logging Techniques – Electric and Sonic to Formation Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1