ASPECT: industrial self-tuning nonlinear controller on a PLC

S. Gerkšič, J. Kocijan, S. Strmcnik, G. Dolanc, D. Vrančić, I. Škrjanc, S. Blažič, M. Božiček, Z. Marinsek, M. Hadjiski, K. Boshnakov, R. King, A. Stathaki
{"title":"ASPECT: industrial self-tuning nonlinear controller on a PLC","authors":"S. Gerkšič, J. Kocijan, S. Strmcnik, G. Dolanc, D. Vrančić, I. Škrjanc, S. Blažič, M. Božiček, Z. Marinsek, M. Hadjiski, K. Boshnakov, R. King, A. Stathaki","doi":"10.1109/EURCON.2003.1248043","DOIUrl":null,"url":null,"abstract":"The presented self-tuning nonlinear controller ASPECT (advanced control algorithms for programmable logic controllers) is intended for control of a practically important class of nonlinear processes that may be presented by a set of low-order local linear models. The model is obtained by means of experimental modelling using an online learning procedure that combines model identification with pre- and post-identification steps that provide reliable operation. There is a choice of several control algorithms suitable for different processes that may be used for control and whose parameters are automatically tuned from the model. The controller monitors the resulting control performance and may react to detected irregularities. The choice of the controller structure and algorithms allows implementation on available industrial hardware, such as programmable logic controllers (PLCs) or open controllers, and simplifies configuration of parameters.","PeriodicalId":337983,"journal":{"name":"The IEEE Region 8 EUROCON 2003. Computer as a Tool.","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The IEEE Region 8 EUROCON 2003. Computer as a Tool.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2003.1248043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presented self-tuning nonlinear controller ASPECT (advanced control algorithms for programmable logic controllers) is intended for control of a practically important class of nonlinear processes that may be presented by a set of low-order local linear models. The model is obtained by means of experimental modelling using an online learning procedure that combines model identification with pre- and post-identification steps that provide reliable operation. There is a choice of several control algorithms suitable for different processes that may be used for control and whose parameters are automatically tuned from the model. The controller monitors the resulting control performance and may react to detected irregularities. The choice of the controller structure and algorithms allows implementation on available industrial hardware, such as programmable logic controllers (PLCs) or open controllers, and simplifies configuration of parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方面:工业自整定非线性控制器的PLC
所提出的自整定非线性控制器ASPECT(可编程逻辑控制器的高级控制算法)旨在控制一类实际重要的非线性过程,这些过程可能由一组低阶局部线性模型表示。该模型是通过使用在线学习过程的实验建模获得的,该过程将模型识别与提供可靠操作的前后识别步骤相结合。有几种控制算法可供选择,适用于可能用于控制的不同过程,其参数可从模型自动调整。控制器监视由此产生的控制性能,并可能对检测到的异常情况作出反应。控制器结构和算法的选择允许在可用的工业硬件上实现,如可编程逻辑控制器(plc)或开放式控制器,并简化参数配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retargetable tools for embedded software Aristotle still wins over Newton: an evaluation report of a new, simulation-supported approach to teach the concepts of inertia and gravity Matlab based time-domain simulation of multiconductor transmission line systems Computer in power electronics education Computer simulations for conceptual understanding of dielectrophoresis using JaCoB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1