Chawki Benchehida, M. K. Benhaoua, H. Zahaf, G. Lipari
{"title":"Task and Communication Allocation for Real-time Tasks to Networks-on-Chip Multiprocessors","authors":"Chawki Benchehida, M. K. Benhaoua, H. Zahaf, G. Lipari","doi":"10.1109/EDiS49545.2020.9296446","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of analyzing the behavior of a set of real-time tasks on a Network-on-chip-based (NoC) architecture. Our approach is to transform the allocation of tasks and communications within a NoC into a classical real-time allocation problem. It provides an extension of classical bin-packing heuristics to allocate a set of real-time applications modeled using a directed acyclic graphs (DAGs) to a set of processors interconnected through a NoC.The paper describes the schedulability analysis, including allocation and communication. It provides also a comparative study of different allocation and communication algorithms and presents accordingly a set of promising research insights.","PeriodicalId":119426,"journal":{"name":"2020 Second International Conference on Embedded & Distributed Systems (EDiS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Second International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS49545.2020.9296446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we address the problem of analyzing the behavior of a set of real-time tasks on a Network-on-chip-based (NoC) architecture. Our approach is to transform the allocation of tasks and communications within a NoC into a classical real-time allocation problem. It provides an extension of classical bin-packing heuristics to allocate a set of real-time applications modeled using a directed acyclic graphs (DAGs) to a set of processors interconnected through a NoC.The paper describes the schedulability analysis, including allocation and communication. It provides also a comparative study of different allocation and communication algorithms and presents accordingly a set of promising research insights.