Evolutionary Multi-Objective Algorithm to effectively improve the performance of the classic tuning of fuzzy logic controllers for a heating, ventilating and Air Conditioning system

M. J. Gacto, R. Alcalá, F. Herrera
{"title":"Evolutionary Multi-Objective Algorithm to effectively improve the performance of the classic tuning of fuzzy logic controllers for a heating, ventilating and Air Conditioning system","authors":"M. J. Gacto, R. Alcalá, F. Herrera","doi":"10.1109/GEFS.2011.5949494","DOIUrl":null,"url":null,"abstract":"In this work, we present an advanced Multi-Objective Genetic Algorithm for obtaining more compact fuzzy logic controllers as the way to find the best combination of rules, thus improving the system performance in a problem to control a Heating, Ventilating, and Air Conditioning system. To this end, two objectives have been considered, maximizing the performance of the system (involving energy performance, stability and indoor comfort requirements) and minimizing the number of rules obtained (for finding the most cooperative/accurate rule subset).","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work, we present an advanced Multi-Objective Genetic Algorithm for obtaining more compact fuzzy logic controllers as the way to find the best combination of rules, thus improving the system performance in a problem to control a Heating, Ventilating, and Air Conditioning system. To this end, two objectives have been considered, maximizing the performance of the system (involving energy performance, stability and indoor comfort requirements) and minimizing the number of rules obtained (for finding the most cooperative/accurate rule subset).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用进化多目标算法,有效改进了经典的供热、通风和空调系统模糊控制器的整定性能
在这项工作中,我们提出了一种先进的多目标遗传算法,用于获得更紧凑的模糊逻辑控制器,作为找到最佳规则组合的方法,从而提高系统在控制供暖,通风和空调系统问题中的性能。为此,考虑了两个目标,即最大化系统性能(涉及能源性能、稳定性和室内舒适性要求)和最小化获得的规则数量(用于找到最合作/最准确的规则子集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page A fuzzy genetic system for segmentation of on-line handwriting: Application to ADAB database Body posture recognition by means of a genetic fuzzy finite state machine KASIA approach vs. Differential Evolution in Fuzzy Rule-Based meta-schedulers for Grid computing Implementation of Fuzzy NARX IMC PID control of PAM robot arm using Modified Genetic Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1