HMM-based separation of acoustic transfer function for single-channel sound source localization

R. Takashima, T. Takiguchi, Y. Ariki
{"title":"HMM-based separation of acoustic transfer function for single-channel sound source localization","authors":"R. Takashima, T. Takiguchi, Y. Ariki","doi":"10.1109/ICASSP.2010.5496188","DOIUrl":null,"url":null,"abstract":"This paper presents a sound source (talker) localization method using only a single microphone, where a HMM (Hidden Markov Model) of clean speech is introduced to estimate the acoustic transfer function from a user's position. The new method is able to carry out this estimation without measuring impulse responses. The frame sequence of the acoustic transfer function is estimated by maximizing the likelihood of training data uttered from a given position, where the cepstral parameters are used to effectively represent useful clean speech. Using the estimated frame sequence data, the GMM (Gaussian Mixture Model) of the acoustic transfer function is created to deal with the influence of a room impulse response. Then, for each test data set, we find a maximum-likelihood GMM from among the estimated GMMs corresponding to each position. The effectiveness of this method has been confirmed by talker localization experiments performed in a room environment.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5496188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a sound source (talker) localization method using only a single microphone, where a HMM (Hidden Markov Model) of clean speech is introduced to estimate the acoustic transfer function from a user's position. The new method is able to carry out this estimation without measuring impulse responses. The frame sequence of the acoustic transfer function is estimated by maximizing the likelihood of training data uttered from a given position, where the cepstral parameters are used to effectively represent useful clean speech. Using the estimated frame sequence data, the GMM (Gaussian Mixture Model) of the acoustic transfer function is created to deal with the influence of a room impulse response. Then, for each test data set, we find a maximum-likelihood GMM from among the estimated GMMs corresponding to each position. The effectiveness of this method has been confirmed by talker localization experiments performed in a room environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于hmm的单通道声源定位声传递函数分离
本文提出了一种单麦克风声源(说话人)定位方法,该方法利用隐马尔可夫模型(HMM)从用户位置估计声音传递函数。新方法可以在不测量脉冲响应的情况下进行估计。通过最大化从给定位置发出的训练数据的可能性来估计声传递函数的帧序列,其中倒谱参数用于有效地表示有用的干净语音。利用估计的帧序列数据,建立了声学传递函数的高斯混合模型来处理房间脉冲响应的影响。然后,对于每个测试数据集,我们从每个位置对应的估计GMM中找到一个最大似然GMM。在室内环境下进行的对讲人定位实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive tone mapping for High Dynamic Range video Search error risk minimization in Viterbi beam search for speech recognition Predicting interruptions in dyadic spoken interactions Simple methods for improving speaker-similarity of HMM-based speech synthesis Model-based dereverberation in the logmelspec domain for robust distant-talking speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1